François Schwarzentruber (ENS, Rennes)

Motivated by the increasing appeal of robots in information-gathering missions, we study multi-agent path planning problems in which the agents must remain interconnected. We model an area by a topological graph specifying the movement and the connectivity constraints of the agents. In the first part of the talk, we study the theoretical complexity of the reachability and the coverage problems of a fleet of connected agents. We also introduce a new class called sight-moveable graphs which admit efficient algorithms. In the second part, we re-visit the conflict-based search algorithm known for multi- agent path finding, and define a variant where conflicts arise from disconnections rather than collisions. We give experimental results in which we compare our algorithms with the literature.