Brigitte Vallée (GREYC, Caen)

We study two arithmetical sources associated with classical partitions, that are both defined through the mediant of two fractions. The Stern-Brocot source is associated with the sequence of all the mediants, while the Sturm source only keeps mediants whose denominator is ``not too large’’. Even though these sources are both of zero Shannon entropy, with very similar Renyi entropies, their probabilistic features yet appear to be quite different. We then study how they influence the behaviour of tries built on words they emit, and we notably focus on the trie depth.

The talk is mainly based on Analytic Combinatorics methods, and Dirichlet generating functions, that are usually used and studied in the case of good sources with positive entropy. To the best of our knowledge, the present study is the first one where these methods are applied to a zero-entropy context. In the present case, the generating function associated with each source is explicit and related to classical functions in Number Theory, as the Zeta function, the double Zeta function or the transfer operator associated with the Gauss map. We then obtain precise asymptotic estimates for the mean value of the trie depth that prove moreover to be quite different for each source. Then, these sources provide explicit and natural instances which lead to two unusual and different trie behaviours.

Joint wok with Valérie Berthé, Eda Cesaratto, Frédéric Paccaut, Pablo Rotondo and Martin Safe.