Thomas Chatain (LSV , CNRS & ENS de Cachan)

Conformance checking techniques asses the suitability of a process model in representing an underlying process, observed through a collection of real executions. One important metric in conformance checking is to asses the precision of the model with respect to the observed executions, i.e., characterize the ability of the model to produce behavior unrelated to the one observed. By avoiding the computation of the full state space of a model, current techniques only provide estimations of the precision metric, which in some situations tend to be very optimistic, thus hiding real problems a process model may have.

In this talk, we present the notion of anti-alignment as a concept to help unveiling traces in the model that may deviate significantly from the observed behavior. Using anti-alignments, current estimations can be improved, e.g., in precision checking. We show how to express the problem of finding anti- alignments as the satisfiability of a Boolean formula, and provide a tool which can deal with large models efficiently.