Retour à l'index du GREYC

Séminaire Algorithmique

Site du CNRS

Séminaire Algorithmique

Le séminaire a lieu le mardi à 11 h 45 (sauf modification exceptionnelle), au campus Côte de Nacre, bâtiment Sciences 3, salle S3 351, 3ème étage.

Résumé du séminaire du Mardi 13 Novembre 2018

Points apériodiques dans les espaces de pavage bidimensionnels

par Pascal Vanier (LACL, Paris-Est Créteil)

La théorie des espaces de pavages a été profondément façonnée par le résultat historique de Berger : un jeu de tuiles fini peut ne paver le plan que de manière apériodique. Ces points apériodiques sont au coeur de nombreuses directions de recherche du domaine, en mathématiques comme en informatique. Dans cette exposé, nous répondons aux questions suivantes en dimension 2 :

  1. Quelle est la complexité calculatoire de déterminer si un jeu de tuiles (espace de type fini) possède un point apériodique ?
  2. Comment se comportent les espaces de pavages ne possédant aucun point apériodique ?

Nous montrons qu'un espace de pavage 2D sans point apériodique a une structure très forte : il est "équivalent" (presque conjugué) à un espace de pavage 1D, et ce résultat s'applique aux espaces de type fini ou non. Nous en déduisons que le problème de posséder un point apériodique est co-récursivement-énumérable-complet, et que la plupart des propriétés et méthodes propres au cas 1D s'appliquent aux espaces 2D sans point apériodique. La situation en dimension supérieure semble beaucoup moins claire.

Cet exposé est issu d'une collaboration avec Anael Grandjean et Benjamin Hellouin de Menibus.

GREYC
Campus Côte de Nacre, boulevard du Maréchal Juin
BP 5186
14032 Caen Cedex
FAX : +33 (0)2 31 56 73 30
http://www.greyc.fr