Retour à l'index du GREYC

Séminaire Algorithmique

Site du CNRS

Séminaire Algorithmique

Le séminaire a lieu le mardi à 11 h 45 (sauf modification exceptionnelle), au campus Côte de Nacre, bâtiment Sciences 3, salle S3 351, 3ème étage.

Résumé du séminaire du Mardi 28 Mars 2017

Solvability of Matrix-Exponential Equations

par Amaury Pouly (MPI-SWS, Saarbrücken)

We consider the problem of checking whether a switching system can reach a particular state. We show that even this problem is undecidable but decidable in some restricted cases. A switching system is a particular form of hybrid system very commonly used to model electrical systems with several states. It consists of a finite number of state and in each state, the system evolves according to a linear differential equation. This type of model is also used in modelisation to over-approximate the possible behaviours of a physical system when the transition rules between states are unclear. Our result shows a surprising connection with number of theorems from algebraic and transcendental number theory, and Hilbert's Tenth Problem. One possible interpretation of this work is that switching systems, despite their innocent look, are already too powerful a model of computation.

GREYC
Campus Côte de Nacre, boulevard du Maréchal Juin
BP 5186
14032 Caen Cedex
FAX : +33 (0)2 31 56 73 30
http://www.greyc.fr