
Fra��ss�e-Ehrenfeucht Games and AsymptoticsAlan WoodsUniversity of Western AustraliaMarch 23, 1998[summary by Julien Cl�ement and Jean-Marie Le Bars]AbstractFra��ss�e-Ehrenfeucht games are played on two structures, where a structure might, for ex-ample, consist of a unary function mapping a �nite set into itself. Via generating series anda Tauberian theorem, it is possible to investigate the asymptotic probability of having awinning strategy for such a game, when it is played using a �xed structure, and a randomstructure of size n, with n going to in�nity. Actually for unary functions this gives a con-vergence law for all properties of the structure which are de�nable in monadic second orderlogic. 1. IntroductionWe consider here structures A based upon a set A and �nitely many relations Ej of �nite arityA = hA;E1(x; y); E2(x); E3(x; y; z); : : :i :A classical example is a set of vertices V and an edge relation E(x; y) so that V = hV;Ei describesa graph. We can also think of simple structures A = hA; fi consisting of a �nite set A and a unaryfunction mapping this set into itself (see �g. 1). This unary function induces a binary relationF (x; y), f(x) = y.In order to use generating functions (see the last section) we need to translate a decompositionproperty of structures to the generating functions: this will be done through the disjoint union.Let us consider two structuresA = 
A;EA1 ; : : :� and B = 
B;EB1 ; : : :� :
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2Figure 1. Graphical representation a structure A = h[29]; fi (where the unaryfunction f maps f1; 2; : : : ; 29g on itself). 1



2If A \B = ; and each EAi has the same arity as EBi , the disjoint union is de�ned as the structurewhose domain is the union of the domains and whose relations are the unions of the correspondingrelations A t B = 
A [B;EA1 [EB1 ; : : :� :A class of structures has components if each structure can be uniquely decomposed into disjointunions of structures (called component structures) from some components classes. For structuresA = h[n]; fi, where [n] denotes f1; : : : ; ng and f is a unary function, one can de�ne componentclasses relative to the size of the unique loop present in each connected component of the graphof f . From this point of view, for the structure A of �gure 1, we see three components. The�rst component of A consists of two component structures in the �rst component class (the classcorresponding to loops of size one i.e. �xed elements of f). The two other components consist intwo single component structures and are respectively in the component classes 2 and 7 (relativelyto the size of the loop).Let us de�ne the rank r(') of a formula ' in the context of the second order logic (or MSO logicfor short) inductively by:1. If ' has no quanti�ers, then r(') = 0;2. If ' is :�, then r(') = r(�);3. If ' is obtained from �1; �2 by the application of a binary propositional connective (e.g., if' is �1 ^ �2, �1 $ �2, etc.) then r(') = maxfr(�1); r(�2)g;4. If ' is of the form 8v�, 9v�, 8V � or 9V � for some variable v, V , then r(') = r(�) + 1.A sentence is a formula that has no free variables and is a property of a structure.The key observation is that there are only �nitely many inequivalent sentences �1; : : : ; �m of rank r.Hence every structure A satis�es exactly one of the sentences (also of rank r) 1 = �1 ^ � � � ^ �m;  2 = :�1 ^ � � � ^ �m; : : : ;  2m = :�1 ^ � � � ^ :�m:Given a rank r (and implicitly the sentences  1; : : : ;  2m), for each i 2 f1; : : : ; 2mg we de�nethe class of structures which satis�es  i. These classes can be viewed as equivalence classes ofFra��ss�e-Ehrenfeucht games. 2. Fra��ss�e-Ehrenfeucht GamesThe goal is to see whether or not we can distinguish two structures in a r moves game. Thegame is played with two structures A = 
A;EA1 ; : : :� and B = 
B;EB1 ; : : :�.{ At move i, Spoil chooses A or B (let's say B) and one of the following is satis�ed1. an element bi 2 B or2. a subset Bi � B.{ Dupe responds on the other structure (A here) choosing one of the following1. an element ai 2 A or2. a subset Ai � A.Dupe wins if after r moves the map fai; : : :g ! fbi; : : :g taking ai 7! bi is an isomorphism of theinduced substructures of hA; Aj ; : : :i ; hB; Bj ; : : :i on these sets. We writeA�r B , Dupe has a winning strategy:Note that there is no ex �quo (either Spoil or Dupe has a winning strategy). These games arethe main tools for proving the following theorems:Theorem 1. Let us consider some structures A1;A2;B1;B2, one hasA1 �r B1;A2 �r B2 ) A1 t A2 �r B1 t B2:
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.Figure 2. The components classes C1; : : : ; C4 relative to �3 (left), the structure Aand its four components (right).Theorem 2. For every structures A and B, one hasA �r B i� there exists i such that A j=  i and B j=  i;where the sentences  i's are de�ned in the �rst section.Corollary 1. There are only �nitely many �r classes.Another problem consists in determining the �r class of a given structure A. It is solved if weknow the number of component structures lying in each �r component class (or color if we think of�r as a colouring). On �gure 2, we have 5 component classes C1; : : : ; C5 relative to the �3 relation(namely triangles, squares, cycles of odd length strictly greater than 3, cycles of even length strictlygreater than 4). The numbers of component structures in each component of the structure A arerespectively m1 = 5; m2 = 1; m3 = 0; m4 = 4.3. Counting Structures with ComponentsWe count either1. the number an of labelled structures with n elements, or2. the number bn of unlabelled structures with n elements (which is, also, the number of noniso-morphic structures with n elements).Here we focus on counting labelled structures. So the exponential generating seriesa(x) = 1Xn=0 ann! xnwill prove highly useful. Indeed, for a structure A = G t H, letting a(x), h(x) and g(x) be thecorresponding exponential generating series, we writea(x) = g(x)h(x) or a(x) = g(x)22 ;whether G and H are in di�erent classes or not. By induction the exponential generating seriesassociated to A = G(1) t � � � t G(m) the disjoint union of m structures G(1); : : : ;G(m), isa(x) = g(1)(x) � � �g(m)(x) or (x) = g(x)mm! ;respectively if G(1); : : : ;G(m) are all from di�erent classes or all in the same class. Hence thegenerating series a(x) for structures with components in the component class C isa(x) = 1 + c(x) + c(x)22! + � � �+ c(x)mm! + � � �= ec(x);



4where c(x) = Pn cnn!xn (cn is the number of labelled structures in the component class C with nelements).There is a connection with monadic second order logic due to Compton [2]. Let us consider thecomponent classes (relatively to �r) C1; : : : ; Ck (so that the generating series for whole componentclass is c(x) = Pki=1 ci(x)). There is a unique k-tuple (m1; : : : ; mk) associated to each structureA, where mi is the number of component structures of A lying in the i-th component class Ci.Moreover for two structures A and B (with k-tuples (m1; : : : ; mk) and (n1; : : : ; nk)), there is aninteger R = R(r) such that if 8i 2 f1; : : : ; kg either mi = ni or mi; ni � R, then A �r B (plainlyspeaking, too many component structures of the same component class prevent to distinguishstructures). Hence for a sentence ' of rank r, the number of labelled structures A such that A j= 'depends only on m1; : : : ; mk where mi 2 f0; 1; : : : ; R � 1;1g is the number of components in Ci(1 means anything equal to at least R = R(r)). Considering the exponential generating seriesa'(x) =P a'n=n! where a'n the number of labelled structures with n elements satisfying ', we canwrite a'(x) = X(m1;:::;mk)2S c1(x)m1m1! � � � ck(x)mkmk! ;where S is �nite and ci(x)1=1! denotes P1m=R ci(x)m=m! = eci(x) �PR�1m=0 ci(x)m=m!. The seriesa'(x) is a �nite sum of very similar terms. It is enough just to consider a series of the forma'(x) = c1(x)m1m1! � � � ct(x)mtmt! ect+1(x) � � �eck(x):This formula means that a structure A satisfying ' has exactly mi components in the class ifor i 2 f1; : : : ; tg and any number of components in the other classes. We want to know a'n orequivalently �n(') = a'n=an, the fraction of structures of size n satisfying '. We are also interestedin the asymptotic probability �' = limn!1 �n('), when this limit exists.It is Compton's idea to use partial converses Tauberian lemmas to get limit laws for �n. Here is asample theorem whose proof is based on such lemmas.Theorem 3. For any class with components, if an=n! � C�n=n� and cn=n! = O(�n=n) (with� > �1) then �(') = limn!1 �n(') exists for all MSO sentences ' and is equal to a'(�)=a(�).Due to known results about an and cn for structures with one unary function, we have alsoCorollary 2. The asymptotic probability �' always exists with one unary function.References[1] Compton (Kevin J.). { Application of a Tauberian theorem to �nite model theory. Archiv f�ur MathematischeLogik und Grundlagenforschung, vol. 25, n�1-2, 1985, pp. 91{98.[2] Compton (Kevin J.). { A logical approach to asymptotic combinatorics. II. Monadic second-order properties.Journal of Combinatorial Theory. Series A, vol. 50, n�1, 1989, pp. 110{131.[3] Fagin (Ronald). { Probabilities on �nite models. Journal of Symbolic Logic, vol. 41, n�1, 1976, pp. 50{58.[4] Glebski�� (Ju. V.), Kogan (D. I.), Liogon'ki�� (M. I.), and Talanov (V. A.). { Volume and fraction of satis�abilityof formulas of the lower predicate calculus. Kibernetika (Kiev), vol. 5, n�2, 1969, pp. 17{27. { English translationCybernetics, vol. 5 (1972), pp. 142{154.[5] Woods (Alan). { Counting �nite models. The Journal of Symbolic Logic, vol. 62, n�3, September 1997, pp. 925{949.


