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Abstract
The Cantor distribution is defined as a random series
1-9 i
L
i>1

where ¥ is a parameter and the X; are random variables that take the values 0 and 1 with
probability 1/2. The moments and order statistics are discussed, as well as a “Fibonacci”
variation. Connections to certain trees and splitting processes are also mentioned.

1. Cantor distribution

1.1. Random series. The Cantor distribution with parameter ¥ (0 < ¥ < 1/2) was introduced
in [5] by the random series
v ;
X=- > X

i>1
where the X; are independent with the distribution Pr[X; = 0] = Pr[X; =1] = 1, and ¥ = 1 — 9.
The name stems from the special case ¥ = %, since then this process gives exactly those numbers
from the interval [0, 1] that have a ternary expansion solely consisting of the digits 0 and 2. We
might alternatively consider an infinite (random) word wyw;--- over the alphabet {0,1} and a

map value, defined by

9 .
value(wiwg - -+ ) = 3 Z w; Y.
i>1

1.2. Moments of the distribution. We abbreviate a,, = E[X"]. The aim is to solve the recursion
formula (from [5])

n—1
1 N\ —=n—k .k
pm > ()T e, =L
TS (k) o 10

k=0
Let us introduce the exponential generating function A(z) = >, g an%. The functional equation
involving A(z), once solved by iteration, gives
A =[] ——
k>0
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In order to derive an asymptotic equivalent of a,, the Poisson generating function B(z) = e *A(z)
has to be considered. Using “Mellin” techniques to derive an asymptotic expansion of log B(z)
when z tends to infinity and a “de-poissonization” argument which suggests the approximation
a, ~ B(n), one gets

E[X"] = a, = F(log; 4 n)n~ 1081702 (1 +0 (l)) .
n

The function F(z) is periodic of period 1 and has known Fourier coefficients. The mean of F(z) is

for instance _
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~ 2log ¥ 2
1.3. Order statistics. Let us consider n random independent variables Y7,....Y, from a Cantor
distribution. The average value E[min(Y7,...,Y, )] of the smallest value among them is denoted by

a,. The coefficients a, obey the following recursion

n—1
(2" = 20)a, =0+ 9 (Z) day.
k=1

Considering now not exactly the Poisson generating function A(z) = Ekzo an% but rather

~ 1 n
A(2) = A =Y a,—,

er —1 n!
n>0

a simpler equation can be obtained. Indeed, one has

A(22) = 9A(2) + T

The coefficients @, can be extracted directly from this equation (equating coefficients of 2—7: on both
sides). Going back to the original coefficients a,,, we have the explicit solution
L _5”2‘5 (n) Bigi 261 — 1
" k)Jk+1 2k—9 "
k=0
where B, denotes a Bernoulli number. An approach based on Rice’s method finally gives an
asymptotic equivalent of a,

29 — 1
ﬁm (T'(—logy ¥)¢(—1logy ¥) + é(logy m))

where ((s), I'(s) and é(s) denote respectively the Riemann’s zeta function, the gamma function
and a periodic function with period 1 and a very small amplitude (provided ¥ is not too close to 0).

Uy ~ 1082

2. Cantor-Fibonaceil distribution

2.1. Fibonacci restriction. The Cantor distribution might be viewed as a mapping value over a
set of random words over a binary alphabet. We might also think about restricted words, according
to the Fibonacci restriction, that two adjacent letters ‘1’ are not allowed. The set of (finite)
Fibonacci words F is given by

F ={0,01}"{e+1}.
In the original setting ( Cantor distribution) probabilities are simply introduced by saying that each
letter of {0,1} can appear with probability % Here the situation is more complicated. We say
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that each word of Fibonacci of length m is equally likely. There are F,,,42 such words, with F,, o
denoting the (m + 2)th Fibonacci number. As an example, consider the classical Cantor case with
V= % and m = 3. Then the values
1ue(000) = 0, value(001) = —, value(010) = 2, value(100) = =, value(101) = —2
value =0, value =5 value =g Vvalue =73, value =5
appear, each with probability % The generating function F(z) of Fibonacci words, according to
their lengths is easily derived from the definition of F above,

Note that

Fnzi(a”—ﬁ”) with ozzl—l_\/5 and ﬁ:l_\/g.

V5 2 2

2.2. Moments of the Cantor-Fibonacci distribution. Let us consider the generating functions

Gn(z) = Z (value(w))" 21",

weF

where |w| denotes the length of the Fibonacci word w. The quantity

[2"]G(2)

[z7]F(2)
is the nth moment, when considering words of length m. Then we let m tend to infinity to get a
limit called M,, (note that taking limits wasn’t necessary for the independent original case). The
recursion for value, when restricted to Fibonacci words, is

value(0w) = ¥ - value(w)
value(10w) = 9 + ¥* - value(w).

These formulae translate almost directly to generating functions according to the recursive definition

F =¢€+1+4+{0,10}F. Thus it gives an explicit recursion formula for the functions G, (z)

n—1
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Since we only consider the limit for m — oo, we can get the asymptotic behaviour noting that both
F(z) and G,,(z) have the same dominant singularity at 2 = 1/« and also that it is a simple pole.
Consequently, we have (due to a “pole cancellation”)

L EMEG) L Gue)
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Therefore we have the following theorem

Theorem 1. The moments of the Cantor-Fibonacci distribution fulfill the following recursion:
My =0 and forn > 1

n

1 N\ —n—1 49;
M, = az_agn_gznz:(i)ﬂ UTM;.

=1
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2.3. The asymptotic behaviour of the moments. A rough estimate shows that M, =~ A\". We
might infer that A = 9 + AY?, so that A = H—Lﬁ' It is not rigourous but we can set

My, = M, - (1+9)"

anyway and show that this sequence has nicer properties. As before the recurrence on the coefficients
m, and then the exponential generating function m(z) =5, mn% need to be considered. Finally

the Poisson transformed function m(z) = e *m(z) obeys the functional equation

B(2) = 0 +

m(z) = Tm( z) + Em( z).
Because m,, ~ m(n), the next step considers the behaviour of m(z) for = — co. Using the Mellin
transform (and the Mellin inversion formula), we have the following theorem

Theorem 2. The nth moment M,, of the Cantor-Fibonacci distribution has for n — oo the follow-
ing asymptotic behaviour

n

where ®(z) is a periodic function with period 1 and known Fourier coefficients. The mean (zeroth
Fourier coefficient) is given by

1 0 6—52 N _1 .
— ——m(¥z)z” BTz,
log 9 J, o

-0z

Note that here, ==—m(¥z) is merely considered as an auxiliary function. This integral can be
computed numerically by replacing m(9z) by the first few values of its Taylor expansion, which
can be obtained through the recursion formula on the coefficient m,. As an example, the classical
case ¥ = £ gives (apart from small fluctuations),

M,, ~ 61604987 4380178 757

The fact that in an asymptotic formula the generating function itself, evaluated at a certain point,
appears is not at all uncommon in combinatorial analysis.
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