
Some Properties of the Cantor DistributionHelmut ProdingerTechnische Universit�at Wien, AustriaDecember 9, 1996[summary by Julien Cl�ement]AbstractThe Cantor distribution is de�ned as a random series1� ## Xi�1Xi#i;where # is a parameter and the Xi are random variables that take the values 0 and 1 withprobability 1=2. The moments and order statistics are discussed, as well as a \Fibonacci"variation. Connections to certain trees and splitting processes are also mentioned.1. Cantor distribution1.1. Random series. The Cantor distribution with parameter # (0 < # � 1=2) was introducedin [5] by the random series X = ##Xi�1 Xi#i;where the Xi are independent with the distribution Pr[Xi = 0] = Pr[Xi = 1] = 12 , and # = 1 � #.The name stems from the special case # = 13 , since then this process gives exactly those numbersfrom the interval [0; 1] that have a ternary expansion solely consisting of the digits 0 and 2. Wemight alternatively consider an in�nite (random) word w1w2 � � � over the alphabet f0; 1g and amap value, de�ned by value(w1w2 � � � ) = ##Xi�1 wi#i:1.2. Moments of the distribution. We abbreviate an = E[Xn]. The aim is to solve the recursionformula (from [5]) an = 12(1� #n) n�1Xk=0�nk�#n�k#kak; a0 = 1:Let us introduce the exponential generating function A(z) =Pn�0 an znn! . The functional equationinvolving A(z), once solved by iteration, givesA(z) = Yk�0 1 + e##kz2 :1



2In order to derive an asymptotic equivalent of an, the Poisson generating function B(z) = e�zA(z)has to be considered. Using \Mellin" techniques to derive an asymptotic expansion of logB(z)when z tends to in�nity and a \de-poissonization" argument which suggests the approximationan � B(n), one gets E[Xn] = an = F (log1=# n)n� log1=# 2�1 +O� 1n�� :The function F (x) is periodic of period 1 and has known Fourier coe�cients. The mean of F (x) isfor instance � 12 log# Z 10 Yk�1 1 + e�##kz2 e�#xxlog1=# 2�1dx:1.3. Order statistics. Let us consider n random independent variables Y1; : : : ; Yn from a Cantordistribution. The average value E[min(Y1; : : : ; Yn)] of the smallest value among them is denoted byan. The coe�cients an obey the following recursion(2n � 2#)an = #+ # n�1Xk=1�nk�#ak:Considering now not exactly the Poisson generating function A(z) =Pk�0 an znn! but ratherbA(z) = 1ez � 1A(z) =Xn�0 ban znn! ;a simpler equation can be obtained. Indeed, one hasbA(2z) = # bA(z) + #ez + 1 :The coe�cients ban can be extracted directly from this equation (equating coe�cients of znn! on bothsides). Going back to the original coe�cients an, we have the explicit solutionan = �# n�1Xk=0�nk�Bk+1k + 1 2k+1 � 12k � # ;where Bn denotes a Bernoulli number. An approach based on Rice's method �nally gives anasymptotic equivalent of anan � nlog2 # 2#� 1# log 2 (�(� log2 #)�(� log2 #) + �(log2 n)) ;where �(s), �(s) and �(s) denote respectively the Riemann's zeta function, the gamma functionand a periodic function with period 1 and a very small amplitude (provided # is not too close to 0).2. Cantor-Fibonacci distribution2.1. Fibonacci restriction. The Cantor distribution might be viewed as a mapping value over aset of random words over a binary alphabet. We might also think about restricted words, accordingto the Fibonacci restriction, that two adjacent letters `1' are not allowed. The set of (�nite)Fibonacci words F is given by F = f0; 01g�f� + 1g:In the original setting (Cantor distribution) probabilities are simply introduced by saying that eachletter of f0; 1g can appear with probability 12 . Here the situation is more complicated. We say



3that each word of Fibonacci of length m is equally likely. There are Fm+2 such words, with Fm+2denoting the (m+ 2)th Fibonacci number. As an example, consider the classical Cantor case with# = 13 and m = 3. Then the valuesvalue(000) = 0; value(001) = 227 ; value(010) = 29 ; value(100) = 23 ; value(101) = 2027appear, each with probability 15 . The generating function F (z) of Fibonacci words, according totheir lengths is easily derived from the de�nition of F above,F (z) = 1 + z1� z � z2 = Xm�0Fm+2zm:Note that Fn = 1p5 (�n � �n) with � = 1+p52 and � = 1� p52 :2.2. Moments of the Cantor-Fibonacci distribution. Let us consider the generating functionsGn(z) := Xw2F (value(w))n zjwj;where jwj denotes the length of the Fibonacci word w. The quantity[zm]Gn(z)[zm]F (z)is the nth moment, when considering words of length m. Then we let m tend to in�nity to get alimit called Mn (note that taking limits wasn't necessary for the independent original case). Therecursion for value, when restricted to Fibonacci words, isvalue(0w) = # � value(w)value(10w) = #+ #2 � value(w):These formulae translate almost directly to generating functions according to the recursive de�nitionF = �+ 1 + f0; 10gF. Thus it gives an explicit recursion formula for the functions Gn(z)Gn(z) = 11� #nz � #2nz2 "#nz + z2 n�1Xi=0 �ni�#n�i#2iGi(z)# :Since we only consider the limit for m! 1, we can get the asymptotic behaviour noting that bothF (z) and Gn(z) have the same dominant singularity at z = 1=� and also that it is a simple pole.Consequently, we have (due to a \pole cancellation")Mn = limm!1 [zm]Gn(z)[zm]F (z) = limz!1=� Gn(z)F (z) :Therefore we have the following theoremTheorem 1. The moments of the Cantor-Fibonacci distribution ful�ll the following recursion:M0 = 0 and for n � 1 Mn = 1�2 � �#n � #2n nXi=1 �ni�#n�i#2iMi:



42.3. The asymptotic behaviour of the moments. A rough estimate shows that Mn � �n. Wemight infer that � = #+ �#2, so that � = 11+# . It is not rigourous but we can setmn :=Mn � (1 + #)nanyway and show that this sequence has nicer properties. As before the recurrence on the coe�cientsmn and then the exponential generating function m(z) =Pnmn znn! need to be considered. Finallythe Poisson transformed function bm(z) = e�zm(z) obeys the functional equationbm(z) = e�#z� bm(#z) + 1�2 bm(#2z):Because mn � bm(n), the next step considers the behaviour of bm(z) for z ! 1. Using the Mellintransform (and the Mellin inversion formula), we have the following theoremTheorem 2. The nth moment Mn of the Cantor-Fibonacci distribution has for n!1 the follow-ing asymptotic behaviourMn = �1 + #��n �(� log# n)nlog# ��1 + O� 1n�� ;where �(x) is a periodic function with period 1 and known Fourier coe�cients. The mean (zerothFourier coe�cient) is given by� 1log # Z 10 e�#z� bm(#z)z� log# ��1dz:Note that here, e�#z� bm(#z) is merely considered as an auxiliary function. This integral can becomputed numerically by replacing bm(#z) by the �rst few values of its Taylor expansion, whichcan be obtained through the recursion formula on the coe�cient mn. As an example, the classicalcase # = 13 gives (apart from small 
uctuations),Mn � :6160498n�:43801780:75n:The fact that in an asymptotic formula the generating function itself, evaluated at a certain point,appears is not at all uncommon in combinatorial analysis.References[1] Flajolet (P.), Gourdon (X.), and Dumas (P.). { Mellin transforms and asymptotics: Harmonic sums. TheoreticalComputer Science, n�144, 1995, pp. 3{58.[2] Flajolet (P.) and Sedgewick (R.). { Mellin transforms and asymptotics: �nite di�erences and Rice's integral.Theoretical Computer Science, n�144, 1994, pp. 101{124.[3] Grabner (P.J.) and Prodinger (H.). { Asymptotic analysis of the moments of the Cantor distribution. Statistics& Probability letters, n�26, 1996, pp. 243{248.[4] Knopfmacher (A.) and Prodinger (H.). { Explicit and asymptotic formulae for the expected values of the orderstatistics of the Cantor distribution. Statistics & Probability letters, n�27, 1996, pp. 189{194.[5] Lad (F.R.) and Taylor (W.F.C.). { The moments of the Cantor distribution. Statistics & Probability letters, n�13,1992, pp. 307{310.[6] Prodinger (H.). { The Cantor-Fibonacci distribution. Applications of Fibonacci numbers, 1998. { To appear.


