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Sources dynamiques en théorie de l'information: une analysegénérale des arbres digitauxRésumé : Les arbres digitaux, également connus sous le nom de �tries� sont une structurede donée générique et �exible qui permet d'implanter des dictionnaires construits sur desensembles de mots. Nous donnons une analyse de troies représentations principales deces arbres, les arbres-tableaux, les arbres-listes, et les arbres ternaires de recherche. Lataille et les coûts de recherche de ces représentations sont analysés précisément en moyenne,tandis qu'une analyse en distribution de la hauteur est obtenue. Le modèle uni�cateurd'analyse est celui des �sources dynamiques�, lesquelles recouvrent les modèles classiquescomme les sources sans mémoire (à symboles indépendants), les chaines de Markov �nies, etles densités initiales non uniformes. Les propriétés probabilistes des principaux paramètresde taille, longueur de cheminement et hauteur apparaissent liées à deux caractéristiquesfondamentales de la source: l'entropie et la probabilité de coincidence. Ces caractéristiquesse trouvent elle-mêmems reliées aux propriétés spectrales d'opérateurs de transfert du typeintroduit par Ruelle.Mots-clé : Théorie de l'information, sources dynamiques, analyse d'algorithmes, arbresdigitaux, tries, arbres ternaires de recherche, operateur de transfert, fractions continues.



DYNAMICAL SOURCES IN INFORMATION THEORY:A GENERAL ANALYSIS OF TRIE STRUCTURESJULIEN CLÉMENT1;2, PHILIPPE FLAJOLET2, BRIGITTE VALLÉE1;2;�1 GREYC, Université de Caen, F-14032 Caen (France)2 Algorithms Project, INRIA-Rocquencourt, F-78150 Le Chesnay (France)� February 27, 1999 �Abstract. Digital trees, also known as tries, are a general purpose �exibledata structure that implements dictionaries built on sets of words. An analysisis given of three major representations of tries in the form of array-tries, listtries, and bst-tries (�ternary search tries�). The size and the search costs of thecorresponding representations are analysed precisely in the average case, whilea complete distributional analysis of height of tries is given. The unifying datamodel used is that of dynamical sources and it encompasses classical modelslike those of memoryless sources with independent symbols, of �nite Markovchains, and of nonuniform densities. The probabilistic behaviour of the mainparameters, namely size, path length, or height, appears to be determined bytwo intrinsic characteristics of the source: the entropy and the probability ofletter coincidence. These characteristics are themselves related in a naturalway to spectral properties of speci�c transfer operators of the Ruelle type.IntroductionTries. Digital trees, usually called tries, are both an abstract structure and adata structure that can be superimposed on a set of words produced by somesource. As an abstract structure, tries are based on a splitting according to symbolsencountered in words. Consider a �xed alphabet M = fa1; : : : ; arg, and let Y �M1 be any �nite set of in�nite words overM. The trie associated to Y is de�nedrecursively by the rule,trie(Y ) = htrie(Y n a1); : : : ; trie(Y n ar)i;where Y n � means the subset of Y consisting of strings that start with � strippedof their initial symbol �, with recursion being halted as soon as Y contains lessthan two elements. The advantage of the trie is that it only maintains the minimalpre�x set of characters that is necessary to distinguish all the elements of Y . Intheir abstract versions, tries are thus essentially equivalent to pre�x trees in thetheory of variable length coding.Clearly the tree trie(Y ) supports the search of any word w in the set Y by follow-ing an access path dictated by the successive symbols of w. Similarly, it may be usedto implement insertions and deletions, so that it is a fully dynamic dictionary datatype. In addition, tries e�ciently support set-theoretic operations like union and in-tersection [57], as well as partial match queries or interval search [47], while suitable�Corresponding author. E-mail address: Brigitte.Vallee@info.unicaen.fr.1



2 CLÉMENT, FLAJOLET, VALLÉEadaptations make them a method of choice for complex text processing tasks [22,Ch. 7]. This variety of applications justi�es considering the trie structure as one ofthe central general-purpose data structures of computer science [22, 34, 39, 51].When it comes to implementation, several options are possible depending on thedecision structure chosen to guide descent into subtrees at each node. Three majorchoices present themselves:� The �array-trie� uses an array of pointers to access subtrees directly.� The �list-trie� relies upon (sorted) linked list traversals.� The �bst-trie� uses binary search trees (bst) as subtree access method.The array-trie thus constitutes a direct realization of the abstract trie structure;we occasionally employ the term of �standard trie� to refer to situations whereparameters are shared by the abstract trie and the array trie (this is for instancethe case for the height, size, and path length parameters). The list-trie and thebst-trie combine the abstract trie structure with a subtree access method and areglobally referred to as �hybrid tries�.Our original motivation for considering hybrid trie structures came from a recentpaper of Bentley and Sedgewick [3] who, following early ideas of Clampett [6],developed an elegant implementation of bst-tries, under the name of ternary searchtrie. The basic idea of [3, 6] is to represent the bst-trie as a ternary tree where searchon symbols is conducted like in a standard binary search tree over the alphabetset M, while trie descent is performed by following an escape pointer wheneverequality of symbols is detected. This structure is brie�y discussed in the recentedition of Knuth's treatise [34, p. 512] and complete code is detailed in the latestedition of Sedgewick's book [51, Sec. 15.4]. The code is especially compact and, insimulations, the implementation constants appear to be particularly small. Bentleyand Sedgewick report that, in practical situations, their data structure can be moree�cient than hashing while o�ering considerably wider functionality. Our goal, asanalysts, is to examine this claim and precisely quantify what goes on.For each implementation, we analyse the parameters of path length and size (i.e.,number of nodes). Path length determines search costs while size characterizesthe memory requirements of the data structure. In addition, we also analyse theheight of the abstract trie, which provides a valuable measure of extremal searchperformance. The analysis is then expected to provide useful guidance as to thechoice of representation that is suitable for any particular application.Sources. In information theory contexts, the two simpler models of sources arememoryless sources, where symbols in words are each emitted independently ofthe previous ones, and Markov chains, where the probability of emitting a symboldepends solely on a bounded part of the past history. However, data on which triesare built often arise from sources that may involve intricate dependencies. Ouranalyses are carried out within a general framework related to dynamical systemstheory that encompasses memoryless and Markov sources as well as nonuniformdensity models. This model of probabilistic dynamical sources has been introducedand thoroughly developed by Vallée in [61], and it can describe nonmarkovianphenomena where, precisely, the dependency on past history is unbounded. A highlevel of generality is thus attained by the model.



DYNAMICAL SOURCES AND TRIES 3A probabilistic dynamical source is de�ned by two objects: a symbolic mecha-nism and a density.� The mechanism associates to a real number x of the [0; 1] interval an in�niteword M(x) over the alphabet M. (The approach is obviously related tosymbolic dynamics.) Such a mechanism generalizes numerations system, thebinary expansion of a real x or the continued fraction expansion of the real xbeing well-known instances.� A probability density f over the [0; 1] interval allows values drawn over thatinterval to be nonuniform.Previous authors have studied separately the e�ect of nonuniform densities and ofa few speci�c mechanisms. With the notable exception of [11], all analyses carriedout so far have been relative to a uniform density, f(x) � 1. The �rst analyses werein the context of memoryless sources. For the additive parameters of size and pathlength, they were performed by De Bruijn and Knuth around 1965 and reported inthe �rst edition of [34] published in 1973.. Height was later analysed under Poissonand Bernoulli models in a series of papers [16, 20, 46, 63]. Asymmetric memorylesssources and Markov chain models were then treated systematically by Pittel, aswell as Szpankowski and his collaborators: see for instance [26, 27, 43, 54, 55].Devroye [11] has been the �rst to consider the e�ect on tries of a nonuniform densitybut only in conjunction with standard binary representations. In this paper, weallow concomitantly a nonuniform density and a mechanism that is capable ofmodelling probabilistic bias on individual digits.Operator methods. The methods used in earlier works to analyse standard triesunder simpler source models are rather diverse and range from probabilistic toanalytic. We feel that the present paper uni�es most of what was known beforeregarding average-case analysis of basic parameters like size and path length, as wellas distributional analysis of height, while extending at the same time the analysisto hybrid tries like list-tries and bst-tries. As we shall see, all the estimates appearto involve two crucial characteristics of the source: the entropy and the probabilityof symbol coincidence. The �rst quantity intervenes in the expectation of size andpath length, the second one in the expectation of height. For memoryless sources,generating functions are classically used in conjunction with Mellin transforms.However, when the source has memory, classical generating function techniquesare no longer immediately applicable; for instance, under the Markov chain model,Jacquet and Szpankowski [26] resort to a notion of alignment in conjunction witha suitable inclusion-exclusion principle.In the present setting of probabilistic dynamical sources, the main tool is theRuelle transfer operator [2, 49]. Classically, it is used as a �generating operator�since it can easily generate some of the objects that are essential in the analysis.Here, the analysis of tries involves the pre�xes of the words: all the source wordswhich start with the same pre�x �come from� an interval of [0; 1] that is called afundamental interval. In this context, the classical Ruelle operator is no longersu�cient. In a previous paper on which the present study is largely based, Val-lée [61] has already introduced a generalization of the Ruelle operator, based on asecant construction, that acts on functions of two variables and suitably generatesfundamental intervals. In the case of hybrid tries, we need additionally to generatesimultaneously several fundamental intervals. For this purpose, we devise further



4 CLÉMENT, FLAJOLET, VALLÉEgeneralizations of the Ruelle operator, based on multi-secant constructions, actingon functions of three and four variables. As in their classical version, these general-ized Ruelle operators depend on a complex parameter s and they make it possibleto express intervening Dirichlet series of pairs of fundamental intervals that playa central rôle throughout the paper. The Mellin transform is also heavily used,and, although poles of the Dirichlet series cannot always be made explicit, theycan at least be pretty well localized in the vicinity of a frontier line, so that preciseasymptotic estimates of parameters are possible.Furthermore, positivity properties of the (generalized) Ruelle operators (for realvalues of parameter s) entail the existence of dominant spectral objects. In par-ticular, we prove the existence of the dominant eigenvalue function �(s) de�ned inthe neighbourhood of the real axis. This function turns out to be ubiquitous inthe analysis of trie parameters. The main intrinsic characteristics of the source, itsentropy h(S) and its coincidence probability c(S), are proven to be independent ofthe initial density f on the unit interval, being dependent only on the mechanismof the source through the relationsh(S) = ��0(1) c(S) = �(2):Plan of the paper and results. Section 1 describes the general framework ofdynamical sources, and de�nes fundamental intervals, as well as the two basic char-acteristics of the source, the entropy and the coincidence probability. Sections 2and 3 are devoted to the speci�cations of hybrid tries and to the basic algebraicpart of the analysis. All analyses reduce to a few Dirichlet series of fundamentalmeasures. Section 4 introduces the generalized Ruelle operators and shows howthey generate the Dirichlet series needed. In Section 5, we then transfer the prop-erties of these operators to various Dirichlet series, and relate dominant spectralobjects of the Ruelle operator to the entropy and the coincidence probability. InSections 6 and 7, we come back to average-case analysis, and obtain precise es-timates of size, path lengths, and height. The last section, Section 8 concludeswith examples that include memoryless sources, Markov chain models, continuedfraction representations, as well as nonuniform initial densities.The following results are established for a random trie built on n items.(i) The height of a standard trie has expectation of order logn and its probabilitydistribution is asymptotically of the doubly exponential type with sharp taildecay, E[hn] � 2j log c(S)j lognlimn!1 supk�0 ��Prfhn � kg � exp [��c(S)kn2]�� = 0;where � is a positive constant relative to source S and initial density f .(ii) The average size of the trie is, up to possible small �uctuations, well approx-imated by a quantity of order nS(n) � 1h(S) n:This result in particular generalizes and improves some of the results obtainedby Devroye [11] obtained under L2�conditions on the density f .



DYNAMICAL SOURCES AND TRIES 5(iii) The average path length depends on the hybrid implementation under consid-eration. Let hAi represent an array-trie, hLi a list-trie, and hBi a bst-trie. Forany source built on a �nite alphabet, the average path lengths are invariablyof order n logn,PA(n) � 1h(S)n logn; PL(n) � KL(S)h(S) n logn; PB(n) � KB(S)h(S) n logn;with explicit constants KL(S);KB(S) that only depend on the mechanism ofthe source.For an in�nite (denumerable) alphabet, the array-trie is not meaningful any-more as a data structure. In that case, the average path lengths relative tolist-tries or bst-tries, may happen to be of di�erent orders. (See Prop. 11;such is for instance the case for the continued fraction source discussed inSection 8.)These results are �rst established under a Poisson model that is technically easierto deal with, then transferred to the �xed-size model, called the Bernoulli model,by means of depoissonization techniques. The paper is built around eight theoremsthat cover (in order!) all combinations� Algebraic analysisAsymptotic analysis � � Poisson modelBernoulli model � � Size & path lengthsHeight � :An extended abstract of some of these results restricted to uniform density mod-els in the memoryless and Markov chain cases has been presented at SODA'98 [7].We refer to this paper for a comparison between theoretical predictions and em-pirical studies based on large textual data. It is justi�ed there that, in practice,bst-tries make trie searching about three times faster1 than their binary counter-parts. The present paper is a companion to the general study of dynamical sourcespresented in [61], from which we adapted freely parts of our Sections 1, 4, and 5.As regards methodology, it is also related to approaches followed by one of us inthe analysis of gcd-like algorithms in computational number theory [60, 62].1. Probabilistic dynamical sourcesHere, we describe the general framework of probabilistic dynamical sources. First,we introduce symbolic dynamical sources, with two types of mechanism, either basicor Markovian. Such mechanisms are related to dynamical systems de�ned fromexpanding analytic maps of the unit interval. (The reader may wish to consult [2,37, 49] as general background references.) Then, upon endowing the unit intervalwith some (analytic) density, we de�ne the concept of a probabilistic dynamicalsource. Finally, we present the notion of fundamental intervals and fundamentalmeasures, then introduce the two basic characteristics of the source, the entropyand the coincidence probability.Fundamentals of dynamical sources are studied in [61] and related notions playan important rôle for the analysis of gcd-like algorithms in computational numbertheory [58, 60, 62].1For instance, the present manuscript was e�ciently spell-checked by a modi�ed version of theepelle program based on an implementation of bst-tries by J. Clément [8].



6 CLÉMENT, FLAJOLET, VALLÉE1.1. Basic symbolic dynamical sources. In information theory contexts, asource is a mechanism which produces in�nite words on some alphabet M. Weare �rst interested in sources that are associated to basic dynamical systems, wherethe mechanism is the same at each step. The reader who is unfamiliar with the the-ory of expanding maps and symbolic dynamics may wish to examine the de�nitionthat follows in the light of the usual binary number representation. In that case,the alphabet is M = f0; 1g, the shift is T (x) is f2xg (f�g is the fractional part),the partition is fI0; I1g = f(0; 12 ); ( 12 ; 1)g, and the encoding mapping is �(I0) = 0,�(I1) = 1.De�nition 1 (Basic symbolic dynamical source). A basic dynamical source is de-�ned by four elements:(a) an alphabet M included in N, that is �nite or denumerable;(b) a topological partition of I :=]0; 1[ with disjoint open intervals Im;m 2 M,i.e., I = Sm2M Im(c) an encoding mapping � which is constant and equal to m on each Im;(d) a shift mapping T whose restriction to each Im is a real analytic bijectionfrom Im to I. Let hm be the local inverse of T restricted to Im and H bethe set H := fhm; m 2 Mg. It is assumed that there exists a �xed complexneighbourhood V of I on which the set H satis�es the following:(d1) the mappings hm extend to holomorphic maps on V, mapping V strictlyinside V (i.e., h(V) � V);(d2) the mappings jh0mj extend to holomorphic maps ehm on V and there existnumbers �m < 1 for which 0 < jehm(z)j � �m for z 2 V;(d3) there exists some 
 < 1 for which the series Pm2M �ms converges onRe(s) > 
.The words emitted by the source are then produced as follows: The mappingT : I ! I (that is almost everywhere de�ned) is used for iterating the process, asa shift mapping; the mapping � : I !M is used for encoding. The word M(x) ofM1 associated to a real x 2 I is then formed with the symbolsM(x) := (M1(x);M2(x); : : : ;Mk(x); : : : );(1)where the k-th component Mk(x) of M(x) is equal to �(T k�1x). The number ofbranches of T equals the cardinality of the alphabet, and the alphabet is used forcoding the distinct branches of T , denoted by T[m], or the distinct inverse branchesof T denoted by hm. Here, hm is a bijection from I to Im, which coincides withthe inverse of the restriction T[m] of T to Im. Note that the domain of de�nitionof T[m] is Im.Remarks. We call such a dynamical source basic because of the equalities T (Im) =I. Elsewhere in the literature, it is only asked for a dynamical system that the imageT (Im) be a union of some elements Ij of the partition. The conditions (d1) and(d2) express that the inverse branches hm are contractions, or equivalently that Tis expansive. The condition (d3) automatically holds for a �nite alphabet (with
 = �1), so that it is only useful in the case of in�nite alphabets. In fact, inorder for our treatment to apply, it is su�cient that some �xed iterate of T shouldsatisfy conditions (d). For instance, the shift mapping T associated to the continuedfraction source does not ful�ll conditions (d1) and (d2) but its second iterate T 2does.



DYNAMICAL SOURCES AND TRIES 7Memoryless sources. All memoryless sources can be described in the basic dynam-ical framework. A source is said to be memoryless when the random variables Mkare independent and follow the same law. The memoryless source associated toa probability system P = (pm)m2M (either �nite or denumerable) is the sourcewhere all the components Mk are independent and follow a multinomial law2 ofparameters (pm)m2M. The corresponding topological partition of I is then de�nedby Im :=]qm; qm+1[; where qm = Xj<m pj ;and the restriction of T to Im is the a�ne mapping de�ned by T (qm) = 0 andT (qm+1) = 1.Special cases of importance are the b-ary expansion transformations that arede�ned by T (x) = fbxg; �(x) = bbxc;where buc is the integer part of u and fug = u mod 1 = u � buc is the fractionalpart of u. These transformations give rise to the b-ary expansions of x in base b andare associated to symmetric memoryless sources (i.e., memoryless sources where allpj 's are equal).Continued fraction expansions. This general framework may also create ratherdi�erent types of sources with memory. This arises as soon as a mapping T with(some) nonlinear branches is used. (In a sense, it is the derivative T 0(x) thatkeeps memory of the previous history.) The continued fraction transformation isan example of this situation. The alphabet is then N, the topological partition of Iis de�ned by Im :=]1=(m+1); 1=m[, and the restriction of T to Im is the decreasinglinear fractional transformation T (x) := (1=x)�m,TCF (x) = f 1xg; �CF (x) = b 1xc:When iterated, this transformation gives rise to the continued fraction expansionof x.The inverse branches are all the linear fractional transformations hm de�ned byhm(x) := 1=(x+m). The �rst branch h1 does not satisfy (d1) and (d2), but the setof the linear fractional transformations fhm � hng clearly satis�es conditions (d) sothat, as noted already, the theory of Sections 4 and 5 applies to this case.Homoclinal or heteroclinal? Our de�nition of a probabilistic dynamical source doesnot preclude the situation where some branches are increasing, some others aredecreasing. We introduce the term of homoclinal to refer to the case when allbranches are simultaneously of the same type, and heteroclinal for the other case.Binary and continued fraction representations are homoclinal, while the familiarbinary re�ected code (also known as Gray code),0; 1; 11; 10; 110; 111; 101; 100; 1100; : : :2Memoryless sources are thus binomial or multinomial probability distributions and it is com-mon practice to refer to them as �Bernoulli sources�. In this paper, we qualify as Bernoulli modelany source model, not necessarily memoryless, where the number of items considered is �xed (asopposed to Poisson models).



8 CLÉMENT, FLAJOLET, VALLÉE

Figure 1. Five dynamical sources. From top to bottom: (a) bi-nary representations; (b) a memoryless source with probabilities( 16 ; 13 ; 12 ); (c) the binary re�ected code; (d) continued fraction rep-resentations; (e) a Markov source (S0; S1; S2) that switches betweentwo di�erent representations. The plots represents the graphs ofthe associated shifts T .corresponding toT (x) = 2x if x 2 [0; 12 [; T (x) = 2� 2x if x 2 [ 12 ; 1[;is heteroclinal.1.2. Markov symbolic dynamical sources. Until now, the shift T used at eachstage has been always de�ned according to some unique rule. Very often, themodelling of real-life sources leads to introducing dependencies in the form of ashift that depends on the last symbol emitted. This gives rise to what we nameMarkov sources of which classical Markov chains are only a special case.De�nition 2 (Markov symbolic dynamical sources). LetM be a �nite alphabet ofcardinality r, and let S = (S0; S1; S2; : : : ; Si; : : : ; Sr) be a set of r + 1 di�erentbasic dynamical systems, all de�ned on the same alphabet M. The basic dynamicalsystem S0 is used to begin with, and the dynamical system Sj is chosen wheneverthe previously emitted symbol is j.We now describe more precisely the mechanism of the source. One associates toa real x of I an in�nite word M(x) on alphabet M, as in (1)M(x) := (M1(x); : : : ;Mk(x); : : : );together with the sequence of the iterates of the real x(T<1>(x); T<2>(x); : : : T<k>(x); : : : );



DYNAMICAL SOURCES AND TRIES 9that are now de�ned by the initial conditions M1(x) := �0(x); T<1>(x) := T0(x),and the recurrence relationsif Mk(x) = j; then T<k+1>(x) := Tj(T<k>(x)); and Mk+1(x) := �j(T<k>(x)):(2)Each shift Tj is then associated to a topological partition (Iijj); (1 � i � r) of theunit interval I, and it has to satisfy hypotheses (d) of De�nition 1. We denoteby (T[ijj]); (1 � i � r) the branches of Tj , so that T[ijj] is a real analytic bijectionfrom Iijj to I, that is asked to be expansive. The inverse branches of Tj aredenoted by hijj , so that hijj is a real analytic bijection from I to Iijj that extendsto a holomorphic map on V , mapping V strictly inside V (i.e., hijj(V) � V for1 � i � r; 0 � j � r).The classical model of Markov chains of order 1 is then simply the case when allthe Sj 's are memoryless. More precisely, if the system Sj is a memoryless systemof parameters �j := (pijj)i�r , the transition matrix � of the Markov chain is ther � r matrix � := (pijj) 1 � i; j � r;and the initial probability system is the vector �0.Relation between Markov sources and general dynamical systems. Any Markoviansource can be associated to a dynamical system that is no longer basic. We taker + 1 copies of I, for instance I0 := I =]0; 1[ and Ij :=]j; j + 1[. Denoting by �mthe translation �m(x) := x+m, we then de�ne, for 1 � i � r and 0 � j � rIi;j := �j(Iijj); Ti;j := �i � T[ijj] ���1j ;so that Ti;j is now a bijection from Ii;j on Ii. The system S associated to partitionIi;j of ]0; r + 1[ and to branches Ti;j is a general dynamical system.One can use both interpretations of a Markovian source, but, here, we preferto stay in the unit interval and we adopt the �rst formalism that is closer to theintuition underlying Markov chains. This is the point of view that has been adoptedby Ruelle himself in [48].1.3. Fundamental intervals and pre�xes. We consider now the k-th iterate ofthe shift. In the case of a basic source, this is plainly the k-th iterate of T taken inthe usual sense. In the case of a Markovian source, this is the iterated shift T<k> inthe sense of de�nition (2). Each branch (or each inverse branch) of the k-th iterateof the shift is called a branch (or an inverse branch) of depth k. The depth of theinverse branch h is denoted by jhj. A branch or an inverse branch of depth k isthen associated in a unique way to a �nite word w = (m1;m2; : : : ;mk) of lengthk that keeps track of past choices. In the basic case, each branch and each inversebranch of depth k associated to w = (m1;m2; : : : ;mk) is of the formT[w] = T[mk] � T[mk�1] � T[m1]; hw = hm1 � hm2 � � � � � hmk ;(3)where T[i] and hi denote the i-th branch or inverse branch of T . In the Markov case,each branch and each inverse branch of depth k associated tow = (m1;m2; : : : ;mk)is of the form T[w] = T[mkjmk�1] � T[mk�1jmk�2] � T[m1j0]hw = hm1j0 � hm2jm1 � � � � � hmkjmk�1 :(4)



10 CLÉMENT, FLAJOLET, VALLÉEFor a �nite alphabet of cardinality r, there are rk branches of depth k. We denoteby Hk the set of branches of depth k. Cyclic branches, i.e., branches for which theassociated word starts and ends with the same symbol, play an important rôle inthe case of Markov sources. We denote by C and C[i] the set of cyclic branchesand the set of cyclic branches that start and end with symbol i. In the same vein,Ck; Ck[i] denote the same objects relative to depth k.We now present one of the main objects of the paper.De�nition 3 (Fundamental intervals). The fundamental interval relative to theinverse branch h is the transform Ih := h(I) of the unit interval I by the in-verse branch h. Its depth is the depth jhj of h. The fundamental intervals of depth1 are thus exactly the intervals of the initial partition. A fundamental interval Ihof depth k is formed with all the real numbers x of I which produce a word M(x)whose pre�x w of length k is exactly the �nite word associated to h. It is alsodenoted by Iw.1.4. Probabilistic dynamical sources. In the sequel, we are interested in proba-bilistic dynamical sources, where the words are emitted according to a source mech-anism as previously described, and we also allow for a prescribed initial distributionthat is determined by a density function on the unit interval.De�nition 4 (Probabilistic dynamical sources). Let S be a dynamical source (ba-sic or Markovian) and let f be a real analytic probability density on interval I thatextends to an analytic function on V. Let F (z) = R z0 f(t) dt be the associated dis-tribution function. The pair (S; F ) is called a probabilistic dynamical source. Theset M1 of the words produced by the dynamical probabilistic source (S; F ) is theset M(I) endowed with the probability induced from f by M .In this context, the measure uh of the fundamental interval Ih associated to aninverse branch h as de�ned in (3) or (4) isuh := jF (h(0))� F (h(1))j:(5)This quantity plays an especially important rôle, since it equals the probabilitythat a source word starts with the pre�x w of M� relative to h. It is called thefundamental measure relative to h and it is also denoted by uw.1.5. Dirichlet series of fundamental intervals, entropy, and coincidenceprobability. The entropy h(S; F ) relative to a probabilistic dynamical source(S; F ) is de�ned as the limit, if it exists, of a quantity that involves the funda-mental measures uh, h(S; F ) := limk!1 �1k Xjhj=k uh loguh:(6)In the same vein, the probability that two independent words have the same pre�xof length k equals Pjhj=k u2h . In general, this quantity appears to decrease expo-nentially with k, which leads to de�ne the coincidence probability c(S; F ) as thecorresponding rate, c(S; F ) := limk!1(Xjhj=k u2h )1=k;(7)



DYNAMICAL SOURCES AND TRIES 11provided it exists. The previous two de�nitions involve the series of fundamentalmeasures of depth k�k(F; s) := Xjhj=k ush = Xjhj=k jF (h(0))� F (h(1))js;(8)and one hash(S; F ) := limk!1 �1k dds �k(F; s)js=1 ; c(S; F ) := limk!1 [�k(F; 2)]1=k :(9)In the sequel, we show that, in a precise sense, the quantities �k(F; s) de�nedin (8) behave asymptotically as k-th powers of a certain function,�k(F; s) � �(s)k(10)for a well-de�ned �(s) that is analytic near the real axis (Prop. 5). Entropy andcoincidence probability depend only on the mechanism S, being independent of thedistribution F . They can then be expressed solely in terms of the function �(s) ina way consistent with (9) and (10):h(S) = ��0(1); c(S) = �(2):These two characteristics of a source play an important rôle in all subsequent anal-yses of tries. 2. General tries and models of analysisWe describe here the standard trie and the companion hybrid trie implementationsalong with the main parameters that are relevant from a complexity standpoint.2.1. De�nition of tries. Consider the problem of comparing n in�nite wordsthat, within our analytical framework, are taken to be independently produced bya common dynamical source. Proceeding by elementary comparisons between theirsymbols yields a tree, called a trie [22, 34, 39, 51]. Let X be a sequence of realsof the unit interval, X = (x1; : : : ; xn) 2 In. One considers the sequence of wordsM(X) produced by the dynamical source S,M(X) := (M(x1);M(x2); : : : ;M(xn)):We also need to consider the sequence �(X) formed with the �rst symbol �(xi) ofeach word M(xi); it is called the �rst �slice� of M(X),�(X) := (�(x1); �(x2); : : : ; �(xn)):Thus, two distinct kinds of collections of symbols will intervene in the analysis: thein�nite words produced by the source (represented as vertical words on Figure 2)as well as the �nite sequences (that appear as horizontal slices on Figure 2).In order to build the tree structure in a global fashion, we start from the root.First one groups together all the words which start with the same �rst symbol m,along a branch labelled by m, so that the corresponding subtree collects all thewords starting with symbol m and stripped of their initial symbol. In our model,stripping a word M(x) of its initial symbol is equivalent to shifting x, that is,considering T (x). Note also that the reals associated to the group of words whose
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cccd dFigure 2. A source S emits independently in�nite words thatare represented �vertically� (top). In contrast, at any internal nodeof a trie (bottom), only �slices�, appearing �horizontally�, are to beconsidered.�rst symbol equals m belong to the same fundamental interval hm(I). In this case,the su�xes of words are associated to the shifted sequenceT[m](X) := (T[m](x1); T[m](x2); : : : ; T[m](xn));where T[m](x) is only de�ned when the �rst symbol �(x) equals m and then equalsT (x). This process of splitting will continue until all words have been separatedfrom each other.To summarize, in the language of shifts, one associates to X a digital tree, calleda trie and denoted by trie(X), that is de�ned by the following recursive rules:(R0) If X = ?, then trie(X) is the empty tree.(R1) If X = (x) has cardinality equal to 1, then trie(X) consists of a single externalnode that contains the word M(x).(R2) If X has cardinality jX j at least equal to 2, then trie(X) is an internal noderepresented by � to which are attached the subtries built on the sets T[m](X)



DYNAMICAL SOURCES AND TRIES 13for all possible values of m. Then trie(X) is de�ned bytrie(X) = D�;�trie(T[m](X))	m2ME :(11)Such a tree structure underlies classical radix sorting methods. It can be built byfollowing the recursive rules R0; R1; R2. Any pre�x w which is common to at leasttwo words ofM(X) is associated to an internal node of the trie, itself associated toa fundamental interval Iw containing at least two elements of X .2.2. Implementations of tries and hybrid tries. In the abstract tree structurerepresenting the trie, each internal node is connected by edges to its children. Weassume that the alphabet is totally ordered. Then, there are three natural imple-mentations of such a node based on the classical data structures of array, orderedlist, and binary search tree. There result �hybrid tries� which combine the abstracttrie structure with a data structure that governs access to children in nodes.(a) The simplest implementation uses arrays whose cardinality equals the size ofthe alphabet. Then one accesses children directly through an array of point-ers. Note that this solution is meaningless practically for in�nite alphabets,and space-wasting for large alphabets (with too many null pointers being al-located), but is quite adequate when the cardinality of the alphabet is small(typically, for binary words).(b) The �list-trie� structure remedies the high storage cost of array-tries by linkingsister subtrees at the expense of replacing direct array access by a (sorted)linked list traversal.(c) The �bst-trie� uses binary search trees (bst) as subtree access method, withthe goal of combining advantages of array-tries in terms of time cost, and list-tries in terms of storage cost. As noted in the introduction, the hybrid trieobtained is strictly equivalent to the ternary search trie structure proposedrecently in [3], see also [6]. Indeed, the bst-trie can be viewed as a ternarytree where search on symbols is conducted like in a standard binary searchtree (straight links on Figure 3) over the alphabet setM, while trie descent isperformed by following an escape pointer (curved links on Figure 3) wheneverequality of symbols of detected.On Figure 3, three implementations of the same �abstract� trie are drawn. Forthe standard trie, in either its abstract trie or array-trie version, size and pathlength are respectively 6 and 21. For the hybrid versions, the pointers of the datastructures at nodes induce an extra path length that is 15 for the list-trie and 8 forthe bst-trie.2.3. Parameters. Let us �rst consider standard tries, that is, either the abstractstructure or the array-trie implementation. The level of a node in a trie is thenumber of edges that connect it to the root. The height of the trie is the maximumlevel of any external node. It represents a measure of the distance between thetwo closest elements of M(X) since it equals the minimum number of comparisonsrequired to separate any pair (M(xi);M(xj)) of elements ofM(X). The path lengthof the standard trie is the sum of the levels of all (nonempty) external nodes. Pathlength thus equals the total number of symbols that need to be examined in orderto distinguish all elements of M(X). (Once divided by the number of elements, itgives the mean cost of a positive search, that is, the search cost averaged over all
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Figure 3. Three representations of a trie built from the sequenceof words (cccabc;bbbd; cdadad; ccaca; caabd; cadccd; cdaabd)over the alphabet A = fa; b; c; dg: the array-trie (top; the nullpointers are represented as electrically grounded), the list-trie(bottom left) and the bst-trie (bottom right).items for an item that is present in the trie). The size of the tree is the numberof its internal nodes. Adding to the size the cardinality of X gives the numberof fundamental intervals necessary to isolate all elements of M(X). Clearly, sizedetermines the storage requirements of hybrid trie implementations.In a hybrid trie, path length decomposes as a sum of two components: the �rstone arises from the underlying trie structure; the second one is the additional costincurred by the traversal of internal node structures. It is this overhead which isanalysed here for hybrid tries. (If one is interested in a global external path length,it su�ces to combine additively path length of the abstract trie with this additionalpath length.)



DYNAMICAL SOURCES AND TRIES 152.4. Poisson and Bernoulli models. The Bernoulli model considers a sequenceof n in�nite words independently produced by the same dynamical source. Thissequence is of the form M(X), has cardinality n, and is thus obtained by n inde-pendent drawings x1; x2; : : : ; xn in the interval I, with the interval being endowedwith the probability density f (F denotes the associated distribution function). TheBernoulli model of index n relative to the source (S; F ) is denoted by (Bn; S; F ).Rather than �xing the cardinality n of the set X , it proves technically convenientto consider that the sequence X has a variable number N of elements that obeys aPoisson law of parameter z, namely,PrfN = kg = e�z zkk! :This model is called the Poisson model of rate z. When relative to the dynamicalsource (S; F ), it is denoted by (Pz ; S; F ). From the de�nition, the expectations ofa random variable Y under the Poisson and Bernoulli models are related byE[Y ;Pz; S; F ] = e�z 1Xn=0E[Y ;Bn; S; F ]znn! :(12)A similar relation holds for probabilities of events as they are always representableas expectations of indicator variables. The interest of the Poisson model is thatthere is complete independence on what happens in disjoint subintervals of I. Inparticular, the number of elements that fall into any interval of measure u is itselfdistributed as a Poisson variable of rate zu. Such a property holds notably forthe fundamental intervals associated to source (S; F ), whose measure uw is givenby (5).The strong independence property of the Poisson model provides an easy ac-cess to the expectation of basic parameters. It becomes then necessary to returnto the Bernoulli model �the one of interest for average-case analysis commonlyparametrized by the number n of data items. The process of translating from aPoisson to a Bernoulli model is called depoissonization and several strategies areavailable. Here are are the ones used in this paper.1. Algebraic depoissonization relies on the fact that, by Equation (12), a Poissonquantity is, up to a factor of e�z the exponential generating function of itsBernoulli counterparts:E[Y ;Bn; S; F ] = n! [zn] ez E[Y ;Pz; S; F ];(13) where [zn]h(z) represents the coe�cient of zn in the expansion of h(z) at 0.This technique is the basis of all our exact results under the Bernoulli model:Theorems 2, 4 are derived in this way as counterparts of Theorems 1, 3.2. Asymptotic depoissonizations. In the Poisson model, N is narrowly concen-trated near its mean z with a high probability, so that the Poisson rate zplays a rôle much similar to the Bernoulli cardinality n. It is then reason-able to expect that average values of parameters under both models should beasymptotically equivalent. Generally, the problem is of a Tauberian character.Asymptotic depoissonizations are ways of establishing such an equivalence,based on some supplementary assumptions.2.1. Dirichlet depoissonization relies on the existence of Mellin transforms andan approximation principle between the Dirichlet series of Poisson and



16 CLÉMENT, FLAJOLET, VALLÉEBernoulli models. This technique is used here for the average-case analy-sis of the additive parameters of size and path length under the Bernoullimodel: Theorem 6 is derived in this way from its Poisson version, Theo-rem 5.2.2. Saddle-point depoissonization relies on estimates of Poisson averages (or,equivalently, generating functions) for �nonprobabilistic� values of therate z taken in the complex domain, this in conjunction with a saddlepoint analysis. This technique is used here for the distributional analy-sis of the multiplicative parameter of height under the Bernoulli model:Theorem 8 is derived in this way from its Poisson version, Theorem 7.The net result for us is that dominant asymptotic estimates established initiallyunder the Poisson model remain eventually valid under the Bernoulli model.3. Algebraic analysis of trie parametersWe show here that the expectations of the main parameters of height, size, andvarious forms of path length in standard or hybrid tries can all be expressed assums that involve the measures of fundamental intervals.3.1. Additive parameters. The standard trie built on a sequence X of elementsof In depends in fact only on the set that underlies X . However, the constructioncost of the list-trie and even the shape of the bst-trie depend on the relative orderof elements in the sequence X . What is common to all implementations is that thestructure of the node indexed by w is fully determined by the corresponding slice,�T[w](X) := (�T[w](x1); �T[w](x2); : : : ; �T[w](xn)):First, the root of the trie is determined by the slice �(X) and the collection ofroot subtrees is determined by the collection of shifts T[m](X). In this perspective,the decomposition (11) is synonymous totrie(X) = D�(X);�trie(T[m](X))	m2ME :(14)Consider now an �additive� parameter 
 on trie(X) de�ned recursively by the rule
[trie(X)] = 0 if jX j � 1
[trie(X)] = �(�(X)) + Xm2M 
[trie(T[m](X))] if jX j � 2:The parameter � is sometimes called the �toll�. The recurrence relation can beunwound, leading to 
[trie(X)] = Xw2M� �[�T[w](X)];(15)provided that �(s) is zero on slices s that contain either 0 or 1 symbol.We now describe the probabilistic model that is induced by the Poisson modelat each possible node of the trie determined by a pre�x w. Since the probabilitythat a word starts with pre�x w is equal to the fundamental measure uw de�nedin (5), the probability that the next symbol emitted is m equalspw;m = uw�muw :(16)



DYNAMICAL SOURCES AND TRIES 17Here, the notation w�m denotes the concatenation of sequence w and of symbol m.Since all elements of X are independently drawn, at the internal node labelled byw, symbols are then emitted by the memoryless source Bw that is de�ned by theprobabilities fpw;mgm2M.Moreover, if the cardinality of X is a random Poisson variable of rate z, thelength of the slice �T[w](X) is also a random Poisson variable of rate zuw. Itfollows from (15) that the expectation of parameter 
 is a sum of expectations ofparameter �, E[
;Pz; S; F ] = Xw2M�E[�;Pzuw ;Bw];(17)where w ranges over all (�nite) sequences and Bw denotes the memoryless sourcede�ned in (16).3.2. Search costs at nodes. We consider here the four additive parameters ofinterest, namely, size, and the three path lengths relative to each kind of hybridtrie, and evaluate the expectations of the corresponding tolls.First, the toll �S associated to size equals 1 provided that the internal nodeindexed byw exists or equivalently that the slice �T[w](X) has at least two symbols:�S(s) = (1 if jsj � 20 otherwise.In the same vein, the toll �A for path length of an array-trie is simply�A(s) = (jsj if jsj � 20 otherwise.The parameters �L(s) and �B(s) that are relative to path length of list-tries andof bst-tries are exactly traversal costs of node structures built over a slice s: Thesymbols of s (where repetition is allowed) are inserted in order in a structure (a listor a binary search tree), and then the toll is the cost incurred by the retrieval ofeach occurrence of each symbol of s.The proposition that follows is the key step in the algebraic part of the treatmentof additive trie parameters. In substance, the evaluation of the expected tolls E[�]corresponding to list-tries and bst-tries is analogous to the (easy) analysis of listsand of the (harder) analysis of binary search trees on a �nite domain with a nonuni-form probability distribution; see for instance [1, 5] for related developments. Ourapproach in this paper relies on a symbolic description of parameters by generatingfunctions and is, perhaps, of independent interest.Proposition 1 (Toll parameters). Let B be a memoryless source relative to the setof probabilities fpigi2M and Pz the Poisson model of rate z. Then, in the model(Pz;B), expectations of the toll parameters relative to the size of a trie and the pathlength of an array-trie are respectivelyE[�S ;Pz;B] = 1� (1 + z)e�z; E[�A;Pz;B] = z(1� e�z):



18 CLÉMENT, FLAJOLET, VALLÉEIn the model (Pz ;B), the expectations of traversal costs for ordered lists and binarysearch trees are respectivelyE[�L;Pz;B] = Xj2MP[>j] z (1� e�pjz);E[�B ;Pz;B] = 2 X(i;j)2M2i<j pipjP[i;j]2 �e�zP[i;j] � 1 + zP[i;j]� ;where P[i;j] =Pjk=i pk and P[>j] =Pk>j pk.Proof. We consider an ordered alphabet M = fa1 < a2 < � � � < arg where the i-thsymbol is denoted by ai. For any set L � M�, the ordinary generating function(ogf) and exponential generating function (egf) relative to a parameter � over Lare de�ned as F (z; u; x1; : : : ; xr) = Xs2L zjsju�(s)x1jsj1 � � �xr jsjrbF (z; u; x1; : : : ; xr) = Xs2L zjsjjsj!u�(s)x1jsj1 � � �xr jsjr :(18)Here jsj and jsji denote respectively the total length of s and the number of occur-rences of ai in s. Formally, the variables z and u �mark� the length of the sequencejsj and the value of the parameter �, while the variable xi records the occurrencesof the symbol ai.Formal languages and generating functions are intimately related. In the courseof the analysis, some operations on languages are better translated in terms of egf's,whereas others are better expressed by means of ogf's. The two types of generatingfunctions are related by the combinatorial Laplace transform that is de�ned byL[Xn fn znn! ] =Xn fnzn:(19)For instance, the generating functions relative to the whole set M� are related byL�ez(x1+���+xr)� = 11� z(x1 + � � �+ xr) :When the symbols of M are emitted by a memoryless source B relative to proba-bilities fpig, the expectation of � in the model (Pz;B) isE[�;Pz;B] = e�z @@u bF (z; u; p1; : : : ; pr)���u=1 ;(20)where bF is the exponential generating function associated to parameter � de�nedin (18).1. The expectations of the �rst two parameters �S ; �A are direct consequencesof properties of the Poisson process, but we develop them within the generatingfunction framework as they serve to introduce basic principles. The decomposition,M� = (�+M) +Xi�2Mk;



DYNAMICAL SOURCES AND TRIES 19once translated into egf's yields1 + z(x1 + � � �+ xr) + u(ez(x1+���+xr) � 1� z(x1 + � � �+ xr));1 + z(x1 + � � �+ xr) + (ezu(x1+���+xr) � 1� zu(x1 + � � �+ xr));as egf's relative to �S and �A. An application of (20) then gives the form of E[�A].2. The next parameter �L requires the shu�e (`x ') decomposition [17, 38],M� = a1�x � � � x ar�:meaning that each word decomposes into (possibly void) subwords which are rep-etitions (a�i ) of the same symbol ai, shu�ed in all possible ways. It is a knownand easy result that, in all generality, a shu�e of languages over disjoint alphabetscorresponds to the product of corresponding egf's. The search cost of a key a� in aslice s is then equal to the number of distinct symbols i < � in s. The correspondingexponential generating function isbf�(z; u; x1; : : : ; xr) = Yi<�(u(ezxi � 1) + 1)Yi�� ezxi :It now su�ces to sum over all � 2 M and apply the formula (20) in order to getE[�L].3. The last parameter �B needs a more subtle approach. We proceed by stagesand describe the search for a symbol � in bst(s) by: a search of the maximumalong the rightmost branch of bst(s��), where s<� means s restricted to elementsof index smaller than �; a dual search of the minimum along the leftmost branchof bst(s��). Each one-sided search is described by a regular expression and corre-sponding multivariate rational functions. The combination is achieved by a shu�eproduct that involves formal Laplace transforms.(i) Extrema analysis. The �rst problem to be solved is thus the analysis oflength of the rightmost branch in a tree built on random words, or equivalently theanalysis of left-to-right maxima (also called �records�). Given the alphabet M, theregular expression decompositionM� = rYj=1 (�+ aj �(a1 + a2 + � � �+ aj)�)expresses precisely all the possible decompositions of words by sets of left-to-rightmaxima. By general principles, concatenation translates as an ordinary product ofogf's. Accordingly, the ordinary multivariate generating functionNmax(z; u; x1; x2; : : : ; xr) = rYj=1�1 + zuxj1� z(x1 + � � �+ xj)� ;has its coe�cient [znukxn11 � � �xnrr ] equal to the number of words of length n havingk maxima and nj occurrences of symbol j. Dually, the multivariate ogf for minimais Nmin(z; u; x1; x2; : : : ; xr) = rYj=1�1 + zuxj1� z(xj + � � �+ xr)� :Similar decompositions have been used by Prodinger [45] in the study of the max-imum of geometrically distributed random variables.



20 CLÉMENT, FLAJOLET, VALLÉE(ii) Search costs. Consider next the search cost c� of some �xed symbol � in abst. The shu�e (`x ') decomposition(Mn f�g)� = (a1 + � � �+ a��1)� x (a�+1 + � � �+ ar)� ;expresses the fact that each word decomposes into subwords< a� and> a�, shu�edin all possible ways. Let `x ' also denote the operation on ogf's that translates theshu�e product of languages over disjoint alphabets. As noted before, shu�es oflanguages correspond to products of egf's, while the Laplace transform relates egf'sand ogf's. Thus, one hasf(z)x g(z) = L[L�1[f(z)] � L�1[g(z)]]:Equipped with this operation, we can express the ogf relative to c� asC�(z; u; x1; : : : ; xr) = [Nmax(z; u; x1; : : : ; x��1)xNmin(z; u; x�+1; : : : ; xr)]� �1 + zx�1� z(x1 + � � �+ xr)� ;(21)where the last factor takes into account trailing sequences that may contain �.(iii) Explicit forms. Eq. (21) describes an ogf that condenses all the informa-tion on costs, including the full distribution. Then the egf is obtained by taking theformal inverse Laplace transform. The average cost is as usual obtained by di�eren-tiating (21) with respect to u and setting u = 1 following the principle of (20). Therest of the computation (details omitted) is carried out by means of Laplace trans-forms, partial fraction expansions, and logarithmic derivatives, using the obviousrelationsL[eaz] = 11� az ; L[zeaz] = z(1� az)2 ; 11� az x 11� bz = 11� (a+ b)z :3.3. Size and path length. The form of the recurrence (17), the form of the prob-abilities at each node (16), and the expressions obtained in Proposition 1 somewhatsimplify upon the unwinding of the recursion (15). As a consequence, the expec-tations of the four additive parameters can be solely expressed with fundamentalmeasures.Theorem 1 (Poisson expectations of additive parameters). Let (S; F ) be a proba-bilistic dynamical source and Pz the Poisson model of rate z. Then expectations inthe model (Pz; S; F ) of the toll parameters relative respectively to the size of a trie,path length of an array-trie trie, path length of an ordered-list trie, path length of abst-trie arebS(z) = Xw2M� �1� (1 + zuw)e�zuw� ;bPA(z) = Xw2M� zuw �1� e�zuw�bPL(z) = Xw2M� Xi2M z Uw�[>i](1� e�zuw�i)bPB(z) = 2 Xw2M� X(i;j)2M2i<j uw�iuw�jUw�[j;i]2 �e�zUw�[j;i] � 1 + zUw�[j;i]� ;



DYNAMICAL SOURCES AND TRIES 21where Uw�[j;i] =Pik=j uw�k, and Uw�[>j] =Pk>j uw�k.We can now return to the Bernoulli model thanks to the principles of �algebraicdepoissonization� summarized in (12) and (13) that induce a formal dictionary fromPoisson to Bernoulli expectations:e�az 7! (1� a)n; ze�az 7! n(1� a)n�1:Therefore the expectations of the four additive parameters in the Bernoulli model(Bn; S; F ) are also expressible purely in terms of fundamental measures.Theorem 2 (Bernoulli expectations of additive parameters). Let (Bn; S; F ) be theBernoulli model relative to a �xed number n of words independently drawn from aprobabilistic dynamical source (S; F ). Then the expectations for the size of a trie,path length of an array-trie, path length of an ordered-list trie, path length of a bsttrie are S(n) = Xw2M� h1� (1 + (n� 1)uw) (1� uw)n�1iPA(n) = Xw2M� nuw[1� (1� uw)n�1]PL(n) = Xw2M� Xi2MnUw�[>i](1� (1� uw�i)n�1)PB(n) = 2 Xw2M� X(i;j)2M2i<j uw�iuw�jUw�[j;i]2 �(1� Uw�[j;i])n � 1 + nUw�[j;i]� ;where Uw�[i;j] =Pjk=i uw�k and Uw�[>j] =Pk>j uw�k as before.3.4. Height of a trie. Consider now a random trie (or equivalently, its array-trieimplementation) that is produced by a probabilistic source (S; F ) in the Poissonmodel (Pz; S; F ). Such a trie has height at most k provided that no fundamentalinterval of depth k contains more than one word. The probability of this event, isgiven by the independence property of the Poisson model, from which the meanvalue results.Theorem 3 (Height under the Poisson model). The distribution of trie height un-der the Poisson model (Pz; S; F ) is given by�k(z) := Pr[h � k] = Yjwj=k(1 + zuw)e�zuw = e�z Yjwj=k(1 + zuw)(22)and the expectation of height isbH(z) = E[h;Pz; S; F ] = 1Xk=0 [1� �k(z)] :(23)The corresponding quantities under the Bernoulli model are obtained next bymeans of the �algebraic depoissonization� principle (12), (13).Theorem 4 (Height under the Bernoulli model). Let �k;n denote the probabilitythat a trie built on an n�tuple of random items has height at most k under the



22 CLÉMENT, FLAJOLET, VALLÉEBernoulli model (Bn; S; F ). The exponential generating function of the �k;n satis-�es �k(z) :=Xn �k;n znn! = Yjwj=k (1 + zuw) ;and the corresponding expectation isE[h;Bn; S; F ] = n![zn] 1Xk=00@ez � Yjwj=k(1 + zuw)1A :3.5. Dirichlet series associated to trie parameters. The expectations in thePoisson model and in the Bernoulli model belong to the paradigm of harmonic sumsthat are general sums of the formF (z) = Xk2K �kf(�kz):The asymptotic analysis of such sums is classically done by Mellin transform tech-niques (see Section 6.1) whose application depends on the location and nature ofpoles of an associated Dirichlet series�(s) := Xk2K �k�ks:The Mellin approach thus leads to considering a variety of Dirichlet series of funda-mental intervals. For instance, in the Poisson model, three kinds of Dirichlet seriesare involved for array-tries, list-tries, and bst-tries:�hAi(F; s) = Xw2M� usw; �hLi(F; s) = Xw2M� Xi2MUw�[>i] uw�is�1;(24) �hBi(F; s) = 2 Xw2M� X(i;j)2M2i<j uw�i uw�j Uw�[i;j]s�2:(25)Similar but modi�ed versions arise in the Bernoulli model.In contrast to additive parameters, the quantity expressing the probability dis-tribution of height is not a harmonic sum, however its logarithm is,log�k(z) = � Xjwj=k zuw log(1 + zuw);and it is associated to the Dirichlet series�hAik (F; s) = Xw2Mk uws(26)corresponding to branches of depth k.At this stage, we need a way to study Dirichlet series of fundamental measuresin order to estimate asymptotically average values of parameters. This necessitateslocating the poles of the Dirichlet series de�ned in Equations (24) and (25) as well asdetermining the behaviour of the family of Dirichlet series (when k varies) de�nedin (26). We introduce next several generalizations of Ruelle operators that play therôle of generating operators for fundamental intervals and open an avenue to theanalytic study of such Dirichlet series.



DYNAMICAL SOURCES AND TRIES 234. Generalized Ruelle operators: analytic propertiesThis section starts with the easy notion of density transformers (Section 4.1) thatlift into transfer operators upon introducing an extra complex parameter s (Sec-tion 4.2). We then design a class of generalized Ruelle operators, the multi-secantoperators (Section 4.3), where derivatives present in transfer operators are replacedby secants and multivariate functions are acted on. The operators based on multi-secants generate a variety of Dirichet series of fundamental measures, including theones arising from the analysis of trie parameters (Sections 4.4, 4.5).4.1. Density transformers. There is a direct relationship between the dynamicsof source S, the answers to the main problems of Section 3.5, and spectral prop-erties of an operator closely related to the way the shift T transforms probabilitydistributions. The basic ingredient, well-developed in dynamical systems theory, isthe class of transfer operators [2, 49]. In its simplest form, the transfer operatorassociated to a basic dynamical system is the �density transformer�,G[f ](x) := Xi2M jh0i(x)j f � hi(x):(27)The term comes from the following obvious fact: if X is a random variable whosedistribution has density f , then the density of T (X) is G[f ]. In other words, theoperator G describes one step of the source process. The component operator givenby the i-th term is denoted by G[i]; it is de�ned byG[i][f ](x) := jh0i(x)j f � hi(x);(28)so that G = Xi2MG[i]:(29)In the same way, one can de�ne a �density transformer� associated to a Markovdynamical system. There are now r di�erent densities (f1; f2; : : : ; fr) that corre-spond to �conditional densities�: fj(x) is the density at the point x when the lastemitted symbol equals j. One begins with density f , and, after one iteration of theshift associated to the initial system S0, one hasfj(x) = jh0jj0(x)j f � hjj0(x):More generally, the sequence of conditional densities (f1; f2; : : : ; fr) at one iter-ation stage, and the sequence of conditional densities (g1; g2; : : : ; gr) at the nextiteration stage are related by a matrix of operators G that is built from the densitytransformers Gj associated to each dynamical system Sj . The density transformerGj associated to Sj acts on fjGj [fj ](x) := Xi2M jh0ijj(x)j fj � hijj(x):Each term of the previous sum de�nes an operator which will be denoted by G[ijj],G[ijj][f ](x) := jh0ijj(x)j f � hijj(x);(30)and each term G[ijj][fj ] represents the �part� of the new density gi that �comes from�the density fj . We consider now the r � r�matrix G whose general coe�cient is



24 CLÉMENT, FLAJOLET, VALLÉEG[ijj] G = �G[ijj]� ;(31)(i is the index for lines, and j the index for columns). This matrix G is itselfthe density transformer, since it transforms the sequence of conditional densities(f1; f2; : : : ; fr) at one iteration stage, into the sequence of conditional densities(g1; g2; : : : ; gr) at the following iteration stage:0BBB@g1g2...gr1CCCA = �G[ijj]�0BBB@f1f2...fr1CCCA :4.2. Classical Ruelle operators. In each case, of a basic dynamical system orof a Markovian one, it proves highly useful to work with more general operators,called the Ruelle operators. Each component operator in (28) or (30) depends nowon a complex parameter s and is de�ned through the analytic extension eh of jh0j.The new component operators are respectively denoted by Gs;[i] or Gs;[ijj]Gs;[i][f ](z) := ehi(z)s f � hi(z):(32) Gs;[ijj][f ](z) := ehijj(z)s f � hijj(z):(33)As in (29) or in (31), the Ruelle operators are now respectively de�ned byGs = rXi=1 Gs;[i]; Gs := �Gs;[ijj]�(34)in the basic case, or in the Markovian case. The dynamics of the process is apriori described by s = 1 (i.e., G = G1), but many other properties appear to bedependent upon complex values of s other than 1.4.3. Generalized Ruelle operators. In [59, 61], Vallée has introduced a newtool, the generalized Ruelle operator, that involves secants of inverse branches in-stead of tangents jh0(z)j of inverse branches. Here, we design a further general-ization that involves multi-secants, so that the �hyper-generalized� operator, Gs,acts on a space of functions of m complex variables; it is then said to be an exten-sion of degree m. In our applications, we shall need various extensions of degreesm = 1; 2; 3 or 4.We �rst de�ne two mappings that extend an inverse branch h into a mappingde�ned on Cm . The �rst one that only depends on m isVm[h](x1; : : : ; xm) = (h(x1); : : : ; h(xm)):The second one, denoted by Hs[h], must satisfy the following three properties.(i) Hs extends the tangent mapping and its restriction to the diagonal coincideswith the tangent mapping.Hs[h](x; x; : : : ; x) = ehs(x) and Hs[h](x) = ehs(x) for the special case m = 1:(ii) Hs satis�es multiplicative properties in the style of the chain-rule,Hs[h � g](x1; x2; : : : ; xm) = Hs[h](g(x1); g(x2); : : : ; g(xm)) Hs[g](x1; x2; : : : ; xm):



DYNAMICAL SOURCES AND TRIES 25(iii) Finally, when the parameter s and the points xi are all real, Hs possesses apositivity propertyHs[h](x1; x2; : : : ; xm) > 0 for real s and real xi:Particularly important realizations of Hs are the multi-secant mappings de�nedfrom any collection of a�ne functions s 7! di;j(s)Hs[h](x1; � � � ; xm) := Y1�i;j�m ����h(xi)� h(xj)xi � xj ����di;j(s) with X1�i;j�m di;j(s) = s:(35)The previous properties (i); (ii); (iii) are then clearly all satis�ed.Each component operator in (32) or (33) is now de�ned with the analytic ex-tension eHs[h] of the multi-secant Hs[h] relative to branch h. The new componentoperators are denoted by Gs;[i] or Gs;[ijj] respectively. They act on functions F ofm (complex) variables as followsGs;[i][F ] := eHs[hi] F � Vm[hi]; Gs;[ijj][F ] := eHs[hijj ] F � Vm[hijj ]:In a way analogous to (34), the generalized Ruelle operators are de�ned byGs := rXi=1 Gs;[i]; Gs := �Gs;[ijj]�in the basic case and in the Markovian case, respectively.The generalized Ruelle operator constitutes an extension of the classical Ruelleoperator in the following sense: If f is the diagonal of F , i.e., f(u) := F (u; � � � ; u)(m times), the following relation holds on the diagonal x1 = � � � = xm = uGs[F ](u; � � � ; u) = Gs[f ](u):(36)The case of dimension m = 1 corresponds exactly to the classical Ruelle operatorGs.We next show how the operators Gs generate all the branches h of any depth,�rst in the case of a basic dynamical system (Section 4.4), then in the Markoviancase (Section 4.5).4.4. The Dirichlet series: basic case. By the multiplicative property (ii), thek-th iterate Gs involves all the inverse branches h of depth k,Gks [F ] = Xjhj=k eHs[h] F � Vm;(37)where the function eHs[h] is the analytic extension of the multi-secant Hs[h], andthe sum now ranges over all inverse branches of depth k, or equivalently over allpre�xes w of length k.In the same vein, the quasi-inverse (I �Gs)�1, being the formal sum of all thepowers of the operator, then represents all the possible iterations, and is conse-quently expressed as a sum that ranges over all inverse branches(I �Gs)�1[F ] =Xh eHs[h] F � Vm[h]:



26 CLÉMENT, FLAJOLET, VALLÉEFrom Section 3.5 and Equations (24), (25), (26), the Dirichlet series arising fromthe analysis of tries are�hAi(F; s) = Xw2M� uws; �hAik (F; s) = Xw2Mk uws�hBi(F; s) = 2 Xw2M� X(i;j)2M2i<j uw�i uw�j Uh�[i;j]s�2;�hLi(F; s) = Xw2M� Xi2MUw�[>i] uw�is�1:The �rst two series correspond to the Dirichlet series of fundamental measuresde�ned in Section 1 and they already play a central rôle in a large number of analysesinvolving pre�xes of words; see [61]. They can be generated by the operator relativeto the case m = 2 and the �true� secantHhAis [h](x1; x2) = ����h(x1)� h(x2)x1 � x2 ����s ;(38)applied to the function LhAis := HhAis [F ] which is the secant of the initial distribu-tion F . More precisely,�hAik (F; s) := Xjhj=k jF (h(0))� F (h(1))js = �GhAis �k [LhAis ](0; 1);(39) �hAi(F; s) := Xh jF (h(0))� F (h(1))js = (I �GhAis )�1[LhAis ](0; 1);(40)with GhAis [F ] := Xjhj=1HhAis [h] F � V2:The other two series, �hLi;�hBi, arise from hybrid tries where order betweensymbols matters. There is an order on the alphabet; there is also the natural orderon the topological partition fImg induce by the order on the (0; 1) interval. Weassume that these orders are either identical or the reverse of each other. Themeasure Uw�[i;j] is then the measure of an interval. When the inverse branch his relative to the pre�x w, the two end points are to be chosen amongst the fourpoints h � hi(0); h � hi(1); h � hj(0); h � hj(1). This choice depends on the signs�(h); �(hi); �(hj) of the derivatives of the inverse branches h; hi; hj . The measureUw�[>i] is also the measure of an interval. The two endpoints are to be chosenamongst the four points h�hi(0); h�hi(1); h(0); h(1). This choice depends on signs�(h); �(hi).Thus, each term of the Dirichlet series relative to hybrid tries involves either threepoints (in the case of list-tries) or four points (in the case of bst-tries). Accordingly,the corresponding Ruelle operators act on functions of three variables (m = 3) inthe case of the list-trie and on on functions of four variables (m = 4) in the caseof the bst-trie. We denote them respectively by GhLis and GhBis . They are de�ned



DYNAMICAL SOURCES AND TRIES 27through the multi-secants HhBis and HhLisHhBis [h](x1; x2; x3; x4) = ����h(x1)� h(x2)x1 � x2 ���� � ����h(x3)� h(x4)x3 � x4 ���� � ����h(x1)� h(x4)x1 � x4 ����s�2HhLis [h](x1; x2; x3) = ����h(x2)� h(x3)x2 � x3 ���� � ����h(x1)� h(x2)x1 � x2 ����s�1;(41)so thatGhBis [F ] = Xjhj=1HhBis [h] F � V4[h]; GhLis [F ] = Xjhj=1HhLis [h] F � V3[h]:(42)The particular functions used to generate the Dirichlet series are the secants relativeto initial distribution F ,LhBis = HhBis [F ]; LhLis = HhLis [F ]:As opposed to �hAi(F; s), the series �hBi(F; s) and �hLi(F; s) involve sums of subdi-visions of fundamental intervals. The fundamental canonical measures u?i of depthone and relative to a uniform density will play an important rôle in the expressionof both Dirichlet series. They are de�ned byu?i := jhi(0)� hi(1)j;and, in a way consistent with previous notations, we set U?[i;j] = Pjk=i u?k andU?[>i] =Pk>i u?k.In the homoclinal case with all branches being increasing (i.e. �(h) = 1), one has�hLi(F; s) = Xi U?[>i]u?i �I �GhLis ��1 hLhLis i (hi(0); hi(1); 1);(43) �hBi(F; s) = 2Xi<j u?i u?j U?[i;j]s�2 �I �GhBis ��1(44) hLhBis i (hi(0); hi(1); hj(0); hj(1)):Heteroclinal case. In the heteroclinal case, where some branches increase and otherdecrease, there are eight possible expressions for the measure Uw�[i;j], dependingon the values of �(h); �(hi); �(hj), and four possible expressions for the measureUw�[>i], depending on the values of �(h) and �(hi). So, we split the symbols i ofthe alphabet M into two subsets, depending of the possible values of �(hi), and wesplit the set of all possible branches h (relative to all possible pre�xes w) into twosubsets, corresponding to increasing branches and decreasing branches; we wish togenerate separately these two subsets.For this last splitting, we introduce the signed operator eGs whose componentoperators are de�ned from the sign �(h) of the derivative h0,eGs;[i] := �(hi) Gs;[i]:(45)The multiplicativity of � entails thateGks = Xjhj=k �(h) Gs;h(46)



28 CLÉMENT, FLAJOLET, VALLÉEso that the two relations2 X�(h)=1Gs;h = (I �Gs)�1[F ] + (I � eGs)�1[F ];2 X�(h)=�1Gs;h = (I �Gs)�1[F ]� (I � eGs)�1[F ](47)show that the previous expressions (43) (44) can be extended to the heteroclinalcase, with expressions that now involve the two quasi�inverses (I � Gs)�1 and(I � eGs)�1.In particular, the �part� of each Dirichlet series that involves the quasi-inverse(I � Gs)�1 can be made explicit. We associate to �(hi) 2 f�1; 1g the quantity�(i) := (1 � �(hi))=2 2 f0; 1g. In the case of bst-tries, we consider 4�tuples andoperate with the group B of order 4 generated by the two transpositions � and �acting on the �rst two components and on the last two components, respectively.We denote by B(i; j) the subset of B that contains the two elements ��(i) � ��(j)and �1��(i) � �1��(j). In the case of list-tries, we consider 3�tuples of the form(a; b; c) with c 2 f0; 1g and operate within the group L of order 4 generated by thetwo transpositions � and � which respectively act on the �rst two components, andexchanges the two possible values of the last one. We denote by L(i) the subset ofL that contains the two elements ��(i) � � and �1��(i). Then, the �part" of eachDirichlet series which involves the quasi-inverse (I �Gs)�1 equals respectively12Xi U?[>i] u?i s�1 Xr2L(i)�I �GhLis ��1 hLhLis i r(hi(0); hi(1); 1);(48)in the list-trie case, andXi<j u?i u?j U?[i;j]s�2 Xr2B(i;j)�I �GhBis ��1 hLhBis i r(hi(0); hi(1); hj(0); hj(1))(49)in the bst-trie case.4.5. The Dirichlet series: Markovian case. In the Markovian case, the coe�-cient (i; j) of the k�th iterate of matrix Gs involves all the branches h relative to aword w = (m1; : : :mk) which starts with j (m1 = j) and ends with i (mk = i).For the Dirichlet series relative to array-tries, we wish to generate all the inversebranches of depth k. We �rst consider the operator Ms relative to the initialdynamical system S0 Ms[F ] := 0BBBBBBBB@Gs;[1j0]Gs;[2j0]...Gs;[ij0]...Gs;[rj0]
1CCCCCCCCA [F ]:If e denotes the unit r-th dimensional vector, i.e., te = (1; 1; : : : 1) (r times), thente Ms denotes the generalized Ruelle operator associated to S0. We letGs := te Ms:



DYNAMICAL SOURCES AND TRIES 29For k � 2, the operators te Gk�1s Ms generate all the inverse branches of depth kand we obtain the analog of (37)te Gk�1s Ms [F ] = Xjhj=k eHs[h] F � Vm[h];hI + te (I �Gs)�1Msi [F ] = Xh eHs[h] F � Vm[h]:We then deduce the formulae for the Dirichlet series relative to the array-tries�hAi(F; s) = �I + te�I �GhAis ��1Ms� [LhAis ](0; 1);(50) �hAik (F; s) = te�GhAis �k�1Ms [LhAis ](0; 1)(51)In the same vein, if e` is the `-th vector of the canonical basis, the operatorte` Gk�1s Msgenerates all the inverse branches of depth k relative to pre�xes w that end withsymbol `. In the case when all the branches are increasing, the expressions of theDirichlet series relative to list-tries or bst-tries involve the canonical fundamentalmeasure extended to the Markovian case byu?ij` := jhij`(0)� hij`(1)j;and, consistently with previous notations, we set U?[i;j]j` =Pjk=i u?kj` and U?[>i]j` =Pk>i u?kj`.�hBi(F; s) = 2X̀;i;ji>j u?ij`u?jj`U?[i;j]j`s�2 �I + te` �I �GhBis ��1Ms�(52) [LhBis ](hij`(0); hij`(1); hjj`(0); hjj`(1));�hLi(F; s) = X̀;i U?[>i]j`u?ij` �I + te` �I �GhLis ��1Ms�(53) [LhLis ](hij`(0); hij`(1); 1):Heteroclinal case. In the general case when the branches may be increasing ordecreasing, we consider the signed operators eGs or eGs whose component operatorsare de�ned from the sign �(h) of the derivative h0,eGs;[ijj] := �(hijj) Gs;[ijj]; eGs;[ijj] := �(hijj) Gs;[ijj]:The multiplicativity of � entails formulae as in (46) and (47). Then, the operatorseGs intervene, via their quasi�inverses, in the expressions of the Dirichlet seriesrelative to list-tries or bst-tries, together with the quasi -inverses of the operatorsGs.



30 CLÉMENT, FLAJOLET, VALLÉE4.6. Asymptotic analysis. Asymptotic analysis of coe�cients of these Dirichletseries is dependent on spectral properties of the (generalized) Ruelle operator thatgenerate them. In the study of the height, the asymptotic behaviour of �hAik (as ktends to in�nity) is related to dominant spectral properties of the Ruelle operatorGhAis . For size or path length, the Dirichlet series involve quasi-inverses (I �Gs)�1and (I � eGs)�1 of various Ruelle operators Gs and signed Ruelle operators eGs.Asymptotic analysis of coe�cients of these Dirichlet series is dependent on thelocation of its poles. Such poles arise from values of s where (I�Gs)�1 or (I�eGs)�1is singular, that is, values for which 1 is an eigenvalue of Gs or eGs. In this way,the poles of Dirichlet series also relate to the spectral properties of the transferoperators.5. Generalized Ruelle operators: analytic propertiesThe generalized multi-secant operators belong to the category of nuclear operators(de�ned in Section 5.1) which, in particular, have a discrete spectrum. Such in�nitedimensional operators in many ways �behave like� �nite matrices, with well-de�nednotions of trace and determinant attached to them. First, we introduce compositionoperators that are the basic building blocks of transfer operators (Section 5.2)and have an explicitly characterized spectrum (Section 5.3). Transfer operators,including the multi-secant variety, then have spectra that are determined fromthose of composition operators by means of trace formulae (Section 5.4). On theother hand, the generalized operators possess strong positivity properties of thePerron-Frobenius type for real values of parameter s. Such properties entail theexistence of dominant (positive) spectral objects (Section 5.5) that can be eventuallyrelated to the basic parameters of the source, the entropy and the coincidenceprobability (Section 5.8). A related �quasi-power property� gives access to thebehaviour of operators under iteration (Sections 5.6). Other properties can thenbe transferred to the Dirichlet series of fundamental intervals of interest for theanalysis of tries (Section 5.7, 5.8, 5.9).5.1. Nuclearity, trace formula, and Fredholm determinant. We �rst recallthe notion of nuclearity introduced by Grothendieck [23, 24]. Let B be a Banachspace and B? its dual space. An operator M : B ! B is nuclear of order 0 if itadmits a representationM[f ] =Xi2I �i e?i (f) ei for all f 2 B;with ei 2 B, e?i 2 B? such that jjeijj = jje?i jj = 1 and the �i are p-summable for allp > 0 (i.e., P j�ijp < +1). Most of matrix algebra extends to such operators; inparticular, one can de�ne the trace,Tr L =Xi2I �i e?i (ei); also equal to Tr L =Xi2I �i;where the �i's are the eigenvalues of L, counted with their algebraic multiplicities.The traces of the iterates of L are also well-de�ned, as is the analogue of thecharacteristic polynomial known as the Fredholm determinant,F (L; u) := det(I � uL) :=Yi2I(1� �iu);



DYNAMICAL SOURCES AND TRIES 31where the �i's are the eigenvalues of L, (again counted with their algebraic mul-tiplicities). There exists an important relation between the Fredholm determinantand traces of iterates,det(I � uL) = exp �Tr log(I � uL)� = exp�� 1Xk=1 ukk Tr Lk�(54)that extends the familiar Jacobi formula of matrix theory: log � det = Tr � log.These properties give access to spectral properties of nuclear operators of order 0.5.2. Composition operators. Each component operator Gs;h de�ned byGs;h[f ] := ehs f � his known as a composition operator. We recall that each branch h satis�es contrac-tion properties (d1) and (d2) of De�nition 1: there exists a suitable neighbourhoodV of I such that h and jh0j extend to analytics map on V ; h maps the closure V ofV inside V ; there exists � < 1 for which 0 < jeh(z)j � � for all z 2 V .Then, the operator Gs;h acts on the space A1(V) formed with all functions f thatare holomorphic in the domain V and are continuous on the closure V. Endowedwith the sup-norm, jjf jj = sup fjf(u)j; u 2 Vg;A1(V) is a Banach space. Such operators have been studied in an extensive wayby several authors (Schwartz [50], Shapiro and Taylor [53], Shapiro [52]).Since each branch h satis�es assumptions (d1) and (d2) of De�nition 1, thegeneralized component operator Gs;h acts on the space A1(V) formed with allfunctions F that are holomorphic in the domain Vm and are continuous on theclosure Vm. Endowed with the sup-norm,jjF jj = sup fjF (u1; u2; : : : um)j; (u1; u2; : : : um) 2 Vmg;A1(V) is a Banach space.5.3. Spectra of composition operators. All the extended composition opera-tors Gs;h relative to the same branch h have the same eigenvalues. However, themultiplicities of these eigenvalues depend on the degree m of the extension.Proposition 2. Let �(h) = eh(h) denote the value of eh at the �xed point h of h.Then the spectrum of the operator Gs;h is formed with the eigenvalues �`; (` � 0),�` := �(h)s[�(h)�(h)]`:(55)Each eigenvalue �` appears in SpGs;h with a multiplicity �`+m�1m�1 �. Consequently,a trace formula for Gs;h holdsTrGs;h = �(h)s(1� �(h)�(h))m :Proof. The proof uses a theorem due to Mayer [42]. Here, Multi [A] denotesthe set of multisets built over a multiset A. More precisely, for a multisetA = fa1; a2; a3; : : : ; arg, (with possible equality between symbols ai), one hasMulti [A] = Y1�i�r a�i :



32 CLÉMENT, FLAJOLET, VALLÉETheorem (Mayer). Let 
 be an open domain of Cm , and let B1(
) be the set offunctions that are holomorphic on 
 and continuous on 
. Let R� be de�ned onB1(
) by R�[f ] := � f �  ; where � is in B1(
) and  strictly maps 
 on itself.The spectrum of R� is Sp(R�) = �(z) : Multi [Sp( 0(z)]where z is the unique �xed point of  inside 
 and  0 is the di�erential of  .Since the components operators Gs;h ful�ll the conditions of the theorem, theirspectra are then precisely determined. Note that, for purposes of trie analysis, allthe cases m = 1; 2; 3; 4 are of interest.In the case m = 1 when the operator Gs;h coincides with the usual Ruelleoperator Gs;h, the previous theorem applies with � = ehs;  = h, and Sp( 0(z) =fh0(h)g = f�(h)�(h)g, so thatSpGs;h = f�(h)s(�(h)�(h))` j ` 2 Ngis exactly the set formed with elements �` de�ned in (55).In the general case when the operator Gs;h acts on m-variables spaces, Mayer'stheorem applies with � = eHs[h];  = Vm[h];so that  0(x1; : : : ; xm) is the diagonal matrix with coe�cientsh0(x1); h0(x2); : : : h0(xm). The �xed point of Vm[h] is the point (h; h; : : : ; h),so that SpV 0m[h] (h; h; : : : ; h) = fh0(h)g[m];where the symbol A[m] denotes the multiset obtained by repeating m times eachelement of the (multi)set A. Then, the multiplicity of the eigenvalue �` in spectraof Gs;h equals the number of words of size ` in the language a1�a2� � � � am�, that is[z`] 1(1� z)m = �`+m� 1m� 1 �:Accordingly, these relations entail trace formulae involving the quantity �(h) = eh(h)TrGs;h = �(h)s(1� �(h)�(h))m :Thus, the spectra of Gs;h and Gs;h contain the same elements. We now comparethem more precisely, via their trace formulae. With the notation pm(`) = �`+m�2m�2 �,the generalized trace can be expressed in terms of the trace of the classical operator,TrGs;h = TrGs;h(1� �(h)�(h))m�1 = X̀�0 pm(`) (�(h)�(h))` TrGs;h:Consider again the signed operators eGs;h = �(h) Gs;h and eGs;h = �(h) Gs;h alreadyintroduced in (45). Then the trace of the generalized operators Gs;h, eGs;h are



DYNAMICAL SOURCES AND TRIES 33expressed with the traces of operators Gs+`;h, eGs+`;h,TrGs;h = X` even`�0 pm(`) TrGs+`;h + X` odd`�0 pm(`) Tr eGs+`;h(56) Tr eGs;h = X` even`�0 pm(`) Tr eGs+`;h + X` odd`�0 pm(`) TrGs+`;h(57)5.4. Spectra of transfer operators. We �rst make precise the functional spaceto which the Gs operator is applied. Here, the operator is determined by an integerm and a multi-secant eHs. In the Markovian case, we restrict ourselves to �nitealphabets, but allow in�nite (denumerable) alphabets in the basic case. In thissituation, the possibility of choosing the same open set V for all branches h inconjunction with the convergence condition (d3) entails �nice� properties for theRuelle operator Gs when s belongs to the half-plane Re(s) > 
. We denote by Jthe intersection of V with the real axis. The secant mapping eHs[h] de�ned in (35)has a strictly positive real part on Vm, and the operator Gs is well de�ned for anycomplex s in the half-plane Re(s) > 
.In the basic case, the Gs operators are then taken to act on the space A1(V)de�ned as the set of functions that are holomorphic in the domain Vm and arecontinuous on the closure Vm, endowed with the sup-norm. In the Markovian case,the Gs operators are taken to act on the space A1(V)r. Both functional spacesare Banach spaces. Since the component operators Gs;h are nuclear of order 0, theoperators Gs are nuclear of order 0. In particular they are bounded and compact.So, their spectra are discrete.The signed operators eGs are now de�ned from the signed component operatorseGs;h = �(h) Gs;h, eGs := Xi2M eGs;[i] eGs := (eGs;[ijj])The multiplicativity of � entails equalities for the powers of eGs similar to (45)and (46).The following proposition relates the spectrum of the generalized operator to thespectra of the classical ones.Proposition 3. The spectra of the generalized Ruelle operators Gs, eGs are relatedto the spectra of the classical Ruelle operators Gs, eGsSpGs = 0B@ [` even`�0 (SpGs+`)[pm(`)]1CA [ 0B@ [` odd`�0 �Sp eGs+`�[pm(`)]1CA :Sp eGs = 0B@ [` even`�0 �Sp eGs+`�[pm(`)]1CA [ 0B@ [` odd`�0 (SpGs+`)[pm(`)]1CA ;where pm(`) = �l+m+2m�2 �. Here, the union is taken in the sense of multisets and thenotation A[p] denotes the multi-set obtained by repeating p times each element ofthe (multi)-set A.



34 CLÉMENT, FLAJOLET, VALLÉEProof. In the Markovian case, the trace of the k-th iterate of Gs (resp. Gs) equalsthe sum of the trace of the diagonal elements of the matrix Gks (resp. Gks ); suchdiagonal elements only involve inverse branches h that are cyclic: these are brancheswhose associated word starts and ends with the same symbol. Finally, in both cases,the trace formulae involve the set Ck which is the set of all the inverse branches ofdepth k (in the basic case) or the set of the cyclic inverse branches of depth k (inthe Markov case),TrGks = Xh2Ck TrGs;h; TrGks = Xh2Ck TrGs;h:Then, relations (56) and (57) extend to powers of transfer operators,TrGks = X` even`�0 pm(`) TrGks+` + X` odd`�0 pm(`) Tr eGks+`:Now, via the trace formulae (54), the Fredholm determinant F(s; u) := det(I�uGs)can be expressed in terms of the traces of the powers of the operators, and we obtainlog det(I � uGs) = X` even`�0 pm(`) log det(I � uGs+`) + X` odd`�0 pm(`) log det(I � ueGs+`):The Fredholm determinant of the generalized Ruelle operator Gs acting on a func-tional space with m variables then satis�esdet(I � uGs) = Y` even`�0 [det(I � uGs+`)]pm(`) Y` odd`�0 hdet(I � u eGs+p(`))ipm(`) :Finally one obtains the relation between spectra of Gs and spectra of Gs and eGs.We proceed in the same way for the signed operator eGs.5.5. Dominant spectral properties for real s. When s = � > 
 is real, theoperators Gs;Gs satisfy strong positivity properties related to the Perron-Frobeniustheory [35]. The proof given in [41] can be easily extended to this generalizedframework, using the positivity property (iii) of eHs in Section 4.3. We obtain:For real s > 
, each operator Gs has a unique dominant eigenvalue(i.e., an eigenvalue of largest modulus) �(s) that is is positive and hasmultiplicity 1.A priori, this dominant eigenvalue is dependent on the chosen extension. We provein this section that all the extensions of Gs share the same dominant eigenvalue.Since each operator is compact, its spectrum is discrete and there is a �spectralgap� between the dominant eigenvalue and the remainder of the spectrum. Thismakes it possible to decompose Gs asGs = �(s)Ps +Ns:Here, Ps is the projection onto the dominant eigenspace, and Ns is relative to theremainder of the spectrum, so that its spectral radius is strictly smaller than thedominant eigenvalue.



DYNAMICAL SOURCES AND TRIES 35More generally Gks decomposes asGks = �(s)kPs +Nks :(58)This is true in particular for the classical Ruelle operator Gs whose dominant eigen-value is denoted by �1(s). The previous relations, together with positivity proper-ties of the dominant eigensubspace projections, entail the equalities�(s) = limk!1 Gks [1](0; : : : ; 0) �1(s) = limk!1 Gks [1](0):Relation (36), expressing that Gs is an extension of Gs, entails the equality �(s) =�1(s); thus all the operators Gs have the same dominant eigenvalue �(s).The projection Ps relative to the dominant subspace can be written asPs[G](x1; : : : ; xm) = Es[G] 	s(x1; : : : ; xm);where 	s is the dominant eigenfunction, and Es a linear form. The extensionformula (36) enables us to relate these dominant objects to the dominant objectsrelative to the classical Ruelle operator Gs, namely, its dominant eigenfunction  sand its dominant projector es,	s(u; u; : : : ; u) =  s(u); Es[G] = es[g] if g is the diagonal of G:We have thus proved:Proposition 4. The multi-secant operators Gs all have dominant spectral prop-erties. They share the same dominant eigenvalue �(s), and the other dominantspectral objects (the dominant eigenvectors 	s and the dominant projectors Es) areextensions of the corresponding dominant spectral objects of the classical operatorGs (m = 1)	s(u; : : : ; u) =  s(u); Es[G] = es[g] if g is the diagonal of G.5.6. Quasi-Power Property. By the classical theory of analytic perturba-tion [30], for s in a su�ciently small neighbourhood of any point � of the real axis,unicity of the dominant eigenvalue is preserved, so that the mappings s 7! �(s),s 7! 	s, s 7! Es de�ne analytic functions in a neighbourhood of any point where�(s) is well de�ned. Then, by extending (58) in a neighbourhood of the real axis,one deduces that the k-th iterate of Gs as in (39) behaves as a k-th power of thedominant eigenvalue �(s):Gs[F ](x1; : : : ; xm) � � � �(�)k ;(59)for some � > 0, under the assumption that F is positive on [0; 1] and the xj satisfyxj � 0. The Dirichlet series �k(F; s) associated to the array-trie is a special casethat we state in a detailed form for future reference in the course of the proofs ofTheorems 7 and 8 relative to trie height.Proposition 5 (Quasi-power Property). Let � > 
 be real. For any distributionF associated to a density f 2 A1(V) strictly positive on J , there exists a positiveconstant � such that � = limk!1 �hAik (F; �)�(�)k :(60)



36 CLÉMENT, FLAJOLET, VALLÉELet �(�) be the modulus of a subdominant eigenvalue of G�, and � any constantwith � > �(�). Then, there exist three strictly positive constants �, �, �, such that,for any k � 1, one has��(�)k � �hAik (F; �) � � �(�)k ; j�hAik (F; �) � � �(�)k j � ��k:(61)5.7. Maximum properties of the dominant eigenvalue. Because of the dom-inant spectral property, the dominant eigenvalue function s 7! �(s) plays a centralrôle in our analyses. Here, we establish some important properties of this function.More generally, we study the spectral radius R(s) of the operator Gs. At a point sin the half�plane Re(s) � �, we compare the spectral radii eR(s) of eGs, R(s) of Gs,eR(s) of eGs and the spectral radius R(�) = �(�) of G� .Proposition 6 (Maximum properties of the dominant eigenvalue). Let 
 be theconstant referred to in the condition (d3) of De�nition 1. The following proper-ties hold:(i) The function s 7! �(s) is strictly decreasing along the real axis s > 
.(ii) For any positive reals s; t such that s > t, one has �(s)t < �(t)s.(iii) On each vertical line Re(s) = �, the inequalities eR(s) � �(�), R(s) � �(�),eR(s) � �(�) hold.(iv) In the half-plane Re(s) > �, the strict inequalities R(s) < �(�), eR(s) < �(�)hold.(v) If the equality R(s) = �(�) holds for s = � + it; t 6= 0, then Gs has aneigenvalue � = eia�(�) that belongs to the spectrum of Gs.(v0) If the equality eR(s) = �(�) holds for s = � + it; t 6= 0, then eGs has aneigenvalue � = eia�(�) that belongs to the spectrum of eGs.(vi) Provided that all the � are not equal, the strict inequality eR(�) < �(�) holds.Proof. The �rst two properties are proven in [61]. For properties (iii); (iv); (v),we use the Spectrum formula of Proposition 3, together with the strict decreaseof � along the real axis and the inequality eR(s) � �(s), in a way similar to theproofs in [61]. Finally, Property (vi) is established by means of the converse ofthe triangular inequality, used in the same way as in the proof of Proposition 9 in[61].5.8. Special values. For s = 1, the classical Ruelle operator Gs is well-de�ned(since, by (d4) of De�nition 1, one has 
 < 1) and G1 is a density transformer. Thisproperty entails explicit evaluations of some of the spectral objects at s = 1.Proposition 7 (Special values). The dominant eigenvalue at s = 1 equals 1, thedominant projector e1 of Gs at s = 1 satis�es e1[f ] = R 10 f(x) dx. Let F be thedistribution relative to density f on [0; 1]. Then, the residue at s = 1 of the quasi-inverse (I � Gs)�1[Hs[F ]] is independent of F and only involves the dominanteigenfunction 	s at s = 1 under the form(I �Gs)�1[Hs[F ]] � �1�0(1)(s� 1)	1 (s = 1):Proof. Since fundamental intervals of depth k form a quasi-partition of the unitinterval I, there results the equality �hAik (F; 1) = 1 for any distribution function



DYNAMICAL SOURCES AND TRIES 37F , and thus �(1) = 1. Moreover, the operator G1 is a density transformer: forf(x) > 0 when x is real,Z 10 Gk1 [f ](t) dt = Z 10 f(t) dt = e1[f ] Z 10  1(t) dt+O(�k);from which e1[f ] is obtained, provided that  1 is de�ned as a density functionwith the normalization condition R 10  1(t) dt = 1. One deduces the expression ofprojector E1 by the extension property given in Proposition 4. Then, since thediagonal mapping relative to H1[F ] is exactly F 0 = f , one obtains E1[H1[F ]] =e1[f ] = 1.We recall that entropy and coincidence probabilities are de�ned by (6), (7) interms of limits involving Dirichlet series of �xed depth. Then, the Quasi-powerproperty (60) provides expressions of entropy and coincidence probability that areseen to involve spectral objects for s = 1 and s = 2.Proposition 8 (Entropy and coincidence probabilities). The entropy of thesource is equal to the opposite of the derivative of s 7! �(s) at s = 1, while thecoincidence probability is equal to �(2).5.9. Singularities of the quasi�inverses (I �Gs)�1, (I � eGs)�1. As explainedin Section 3, it is necessary to locate precisely the poles of the various Dirichletseries �(F; s). We recall that �(1) = 1. Then, from Property (iv) of Proposition 6the operators I �Gs, I � eGs are invertible in the half-plane Re(s) > 1. Thus, theoperator (I � Gs)�1, is analytic there and has a simple pole at s = 1. Assertion(vi) of Proposition 6 implies that this is also the case at s = 1, except when allthe � are equal to 1 (i.e. the case eGs = Gs). We focus on what may take placenear the line Re(s) = 1; s 6= 1 and we consider so-called particular points: theyare points s = 1 + it, with t 6= 0 for which the spectrum of Gs or eGs contains aneigenvalue equal to 1. Assertions (v) and (v0) of Proposition 6 prove that, at theseparticular points, the spectrum of classical operators Gs or eGs contains an eigenvalueequal to 1. The following result, which extends results of [14], [44], [59], gives acharacterization of particular points and describes the two types of behaviour thatmay be encountered.Proposition 9 (Singularities of quasi�inverses). The operators Gs, eGs may onlybehave in two di�erent ways on the line Re(s) = 1:(i) Aperiodic case. There are no particular points, and the operators I � Gs,I � eGs are invertible in the punctured half-plane Re(s) > 1; s 6= 1.(ii) Periodic case. There are particular points for the operator Gs. Then they areregularly distributed on the line, and of the form 1+ kit; k 2 Z. The operatorI� eGs may have possible particular points of the form 1+ i(2k+1)t=2; k 2 Z.The operators (I � Gs)�1, (I � eGs)�1 have a simple pole at each of theirparticular points, and there is a strip on the left of the line Re(s) = 1 that isfree of poles.Proof. The proof follows the same lines as in Proposition 9 of [61]. The existenceof particular points for Gs implies the equalities �(h)it = 1 for all inverse branchh. Then, there are two possible cases, depending on whether all the equalities



38 CLÉMENT, FLAJOLET, VALLÉE�(h)it=2 = �(h) hold or not. In the �rst case, the operator eGs has particular pointsat s = 1 + i(2k + 1)t=2 for k 2 Z. In the second case, the operator eGs has noparticular points.6. Asymptotic analysis of size and path lengthWe can now return to the analysis of trie parameters starting with the additive pa-rameters of size and the various path lengths. We �rst introduce the main asymp-totic tool, the Mellin transform, that relates poles of Dirichlet series and asymptoticforms of harmonic sums, including those expressing additive trie parameters. Then,we obtain our main results in the Poisson model. A further stage of �Dirichlet de-poissonization� provides the corresponding asymptotic estimates in the Bernoullimodel.6.1. Mellin transform. The Mellin transform is the method of choice for derivingasymptotic expansions whenever harmonic sums are involved. We brie�y reviewhere the properties needed, following the survey article [18]. The Mellin transformis the integral transform de�ned byg�(s) := Z 10 g(x) xs�1 dx:It is de�ned on a strip Re(s) 2 (�; �) called the fundamental strip that is denotedby h�; �i. For instance, the Mellin transform of e�x is the Euler gamma function�(s) with fundamental strip h0;+1i. A harmonic sum is any sum of the formG(x) = Xk2K �kg(�kx);(62)where the coe�cients f�kg and f�kg are called amplitudes and frequencies, andthe function g is called the base function. The analysis of tries reduces essentiallyto asymptotic estimations of particular harmonic sums.There are two basic principles of Mellin analysis that are used in this paper andthat we now list, referring to [18] for detailed conditions.(M1) Harmonic sum property. The transform of the general harmonic sum de�nedby (62) satis�esG�(s) = �(s) � g�(s); with �(s) = Xk2K �k��sk ;(63) in the intersection of the strips of absolute convergence of �(s) and g�(s).(M2) Mapping property. The Mellin transform maps the individual terms in theasymptotic expansion of a function G(x) (here, typically, a harmonic sumarising from (M1)) to the singularities of the transform G�(s). The corre-spondence fares both ways and is given by the following rule: Assume thatG�(s) de�ned in some strip h�; �i admits a meromorphic continuation to anextended strip h�; 
i with 
 � �, is analytic on the line Re(s) = 
, and satis-�es G�(s) = O(jsj�r) for some r > 1 as Im(s)! �1 in � � Re(s) � 
. Theneach singular term in a local expansion of G�(s) at a pole in the extendedstrip provides a corresponding term in the asymptotic expansion of G(x) at



DYNAMICAL SOURCES AND TRIES 39+1, according to the dictionary:� d(s� �)k� =) � (�1)kd(k � 1)!x��(log x)k�1� ;(64) with an error term that is O(x�
):(65)The combination of (M1) and (M2) then yields the basic principle of asymptoticanalysis by Mellin transforms:The Mellin transform factorizes a harmonic sum G(x), in such a waythat the asymptotic estimation of the sum reduces to analysing separatelytwo collections of singularities: those of the basic transform g�(s) andthose of the associated Dirichlet series �(s).Mellin analysis of harmonic sums is often conducted in situations where: (i) thetransform g� of the base function is of exponential decay (this is systematically thecase when there appears the exponential function); (ii) the Dirichlet series �(s) isof at most polynomial growth as jIm(s)j ! 1. In this case, the transform G�(s) isof fast decay at �i1 and the application of (64) is legitimate.It is apparent from (64) that complex poles induce periodic �uctuations. Asdetailed in [18], the framework extends to any function that has in�nitely manypoles in a �nite strip, provided it remains of controlled growth O(jsj�r) with r > 1on a set of parallels to the real axis that escape to �i1. We refer to the termof asymptotics �in the weak sense� for such conditions that are only imposed on avertical ladder. In that case, there is an in�nite superposition of periodic elementsthat may or may not be collectively periodic: this fact depends on whether polesare regularly spaced vertically, or not.When poles accumulate from the right near the boundary line Re(s) = 
 of thestrip h�; 
i, the general paradigm of (64) and (65) needs to be mildly amended.In e�ect, it is not immediately clear that the induced �uctuation must contributeglobally a term that remains o(x�
). The precise result that follows is logicallyneeded as the situation arises in the context of dynamical sources.Proposition 10 (Improved Mellin asymptotics). Assume that the Mellin trans-form G�(s) of G(x) de�ned in h�; �i admits a meromorphic continuation to thestrip h�; 
i with 
 � �, satis�es O(jsj�r) with r > 1 in the weak asymptotic sensein � � Re(s) � 
, and is meromorphic on the line Re(s) = 
 with only �nitelymany poles on that line. Then one has the implicationG�(s) � X(�;k) d�;k(s� �)k =) G(x) = X(�;k) (�1)kd�;k(k � 1)! x��(logx)k�1 + o(x�
);(66)as x! +1, where � ranges over all poles such that � � Re(�) � 
.The singular expansion of a function in a domain is denoted by `�'. It is to beunderstood in the sense of [18], as the formal sum of the local singular expansionsof 
(s) at each singularity of the domain.Proof. By possibly subtracting elementary functions to G(x), we may assume with-out loss of generality that G(x) is analytic on Re(s) = 
. (Suitable combinationsof exponentials and monomials in x will do, as they as their transforms are of fast



40 CLÉMENT, FLAJOLET, VALLÉEdecay at �i1.) The classical proof of (64) in (M2) appeals to integration on alarge rectangle with vertical sides Re(s) = � and Re(s) = 
; see [18]. We are thenreduced to proving that, for the right boundary,Z 
+i1
�i1 G�(s)x�s ds = o(x�
):Set s = 
 + iu and x = ey. Then, the equivalent estimatex�
 Z +1�1 G�(
 + iu)e�iuy du = o(x�
)is granted by the Riemann-Lebesgue Lemma: Whenever h(u) is in L1(�1;+1),then one has Z +1�1 h(u)eiuy du = o(1);as y ! �1.6.2. Size and path-length in the Poisson model: �nite alphabets. Theoperator I � Gs is invertible in the plane Re(s) > 1, so that the series �(F; s) isanalytic there and it has a simple pole at s = 1. Two types of situations need tobe distinguished depending on the periodicity of the source.(a) In the periodic case, �(F; s) has poles on Re(s) = 1 that are regularly spacedon the line Re(s) = 1 and contribute periodic terms in the asymptotic ex-pansion. Moreover, there is a vertical strip h1� �; 1i (with 0 < � < 1) free ofpoles that provides good bounds for the error terms.(b) In the aperiodic case, there are no other poles on the line Re(s) = 1; however,there may be an accumulation of poles on the left of the line Re(s) = 1.Proposition 10 then allows us to quantify directly the contribution of thesepoles.Theorem 5 (Additive parameters in the Poisson model; �nite alphabet). Let(Pz; S; F ) be a Poisson model of rate z relative to a source S with �nite alphabetand initial distribution F .(i) In the case when the source is aperiodic, the expectations of size and pathlength arebS(z) = 1h(S)z + o(z); bPA(z) = 1h(S)z log z + CA(F; S)z + o(z):The expectations of path length of list-tries and bst-tries are of the form (where Nis B or L for bst's and lists)bPN (z) = KN(S)h(S) z log z + CN (F; S)z + o(z):(ii) In the case when the source is periodic, the expectations of size and pathlength are bS(z) = 1h(S)z [1 +QA(log z)] + o(z1��)bPA(z) = 1h(S)z log z + z [CA(F; S) +QA(log z)] + o(z1��):



DYNAMICAL SOURCES AND TRIES 41The expectations of path length of list-tries and bst-tries are of the form (where Nis B or L) bPN (z) = KN(S)h(S) z log z + z [CN (F; S) +QN (log z)] + o(z1��):The function QN (u) depends on the source S and is of very small amplitude; � isa positive constant, satisfying 0 < � < 1, that is determined by the width of thepole-free region of �(F; s) left of the line Re(s) = 1). The constants KN(S) do notdepend on the initial distribution whereas the constants CN (F; S) may depend onit.Proof. The expressions given in Theorem 1 are harmonic sums that involve the ex-ponential function. The Mellin transform of the exponential is the gamma function�(s) that has known singularities at the nonpositive integers. With our conven-tions, the Dirichlet series of these harmonic sums are of the form �(s) = �(�s) for�(s) a Dirichlet series of fundamental intervals of sorts.Precisely, the expressions of Theorem 1 have the following Mellin transformstabulated along with their fundamental strip:Size: bS(z) 7! ��hAi(F;�s)(s+ 1)�(s) s 2 h�2;�1iPath length: bPA(z) 7! ��hAi(F;�s)�(s+ 1) s 2 h�2;�1iPath length in list-tries: bPL(z) 7! ��hLi(F;�s)�(s + 1) s 2 h�2;�1iPath length in bst-tries: bPB(z) 7! �hBi(F;�s)�(s) s 2 h�2;�1i :All these transforms extend to meromorphic functions in a larger strip to the rightof the line Re(s) = �1 in a way suitable for Mellin analysis.From properties of Gs, the singular expansion of �hAi(F; s) at s = 1 reads,�hAi(F; s) � �1�0(1) 1s� 1 + CA(F; S) (s = 1):In the case of hybrid tries (list-tries or bst-tries), expressions (43), (44) for thebasic homoclinal case, (48), (49) for the basic heteroclinal case, (52), (53) for theMarkovian case, together with special values given in Proposition 7, imply, for thesingular expansions of �hNi(F; s) at s = 1, the form�hNi(F; s) � �1�0(1) KN (S)s� 1 + CN (F; S) (s = 1):The constants KN(S) can be made explicit: they only depend on the �uniformfundamental measures� of depth one, denoted by u?i and on the values of the dom-inant eigenfunction 	1 at the boundaries of fundamental intervals of depth one.For instance, in the case when the dynamical source is basic with all its branchesincreasing, one has KL(S) =Xi U?[>i] 	hLi1 (hi(0); hi(1); 1);KB(S) = 2Xi<j u?i u?jU?[i;j] 	hBi1 (hi(0); hi(1); hj(0); hj(1)):



42 CLÉMENT, FLAJOLET, VALLÉEIn the basic case, but with not all branches being increasing, the assertion (vi) ofProposition 6 shows that the poles of (I � eGs)�1 do not intervene in the dominantterm, and the previous expressions can be generalized thanks to (48) and (49),KL(S) = 12Xi U?[>i] Xr2L(i)	hLi1 r(hi(0); hi(1); 1);KB(S) =Xi<j u?i u?jU?[i;j] Xr2B(i;j) 	hBi1 r(hi(0); hi(1); hj(0); hj(1))In the Markovian case, the formulae are similar and involve the components of thevector eigenfunction 	1 (see Equations (52) and (53)).The constants CN (F; S) are determined through residue calculations and alsoinvolve dominant spectral objects of Gs and eGs at s = 1.Due to the fast decrease of the function �(s) towards �i1, the conditions ofMellin analysis apply. The proof is then completed by means of Equation (43)and (44) combined with basic residue calculations.We remark here that the �uctuations for size can have an asymptotically domi-nant order, while the �uctuations for path length are always subdominant.6.3. Size and path-length in the Poisson model: in�nite alphabets. In thecase of an in�nite alphabet, the series of �uniform fundamental measures� of depthone may involve other singularities, so that the average path lengths of hybrid triesare not always of order z log z.We consider three Dirichlet seriesL(s) :=Xi<j u?j u?s�1i ; B(s) :=Xi<j u?j u?i(u?i + : : : u?j )2�s ; A(s) =Xi u?i s:The last series is exactly the Dirichlet series �hAi1 (1; s). By hypothesis (d3) ofDe�nition 1, there exists 
 < 1 such that this series is convergent for Re(s) > 
.Since the dominant spectral objects 	s and Es are strictly positive for real s,the dominant singularity of �hLi(F; s) is located at s = max(1; sL) where sL isthe dominant singularity of L(s). In the same vein, the dominant singularity of�hBi(F; s) is located at s = max(1; sB) where sB is the dominant singularity ofB(s).This discussion enables us to state:Proposition 11 (Additive parameters in the Poisson model; in�nite alphabet).Assume that the canonical fundamental measures u?i are decreasing and thedominant singularity sA is strictly less than 1. Then the average path length of thebst-trie is necessarily of the formbPB(z) = O(z1+�) for all � > 0:For any 1 < � < 2, there exist sources such that the average path length of thelist-trie is of the form bPL(z) = �(z�):Proof. The proof is based on relations between the dominant singularities sL andsB :



DYNAMICAL SOURCES AND TRIES 43(i) There holds sB � sL � 2. In e�ect, the inequality u?i � (u?i + : : : u?j ) impliesthat B(s) � L(s) for s real, s < 2.(ii) If the sequence u?j is decreasing, then sB � 1. Since (u?j ) is decreasing, onehas u?i + � � �+ u?j � (j � i+ 1)u?j , so that, for 1 < s < 2,B(s) �Xi u?i Xj>i u?j s�1(j � i+ 1)2�s �  Xi u?i! 0@Xj u?j s�1j2�s 1A :The Hölder inequality with � = r=(s� 1) for some r 2] max(
; s� 1); 1[ and� := r=(r + 1� s) entails the convergence of the second series.(iii) If u?i = �(i��) with 1 < � < 2, then sL = 2=� and sB < 1. In this case, theseries B(1) is convergent with a general term that is �(i��), while L(s) hasits general term that is �(i��) with � = �(s� 1) + �� 1.Such a discrepancy between the orders of growth of path length in array tries,list-tries, and bst-tries occurs for instance for the generalized Zipf laws,p(�)k = �(�)�1k��; � > 1;(�(s) is the Riemann zeta function) that have �soft tails�; see also the case of thecontinued fraction source in Section 8.6.4. Dirichlet depoissonization. Mellin transforms are ideally suited to theanalysis of harmonic sums, of which the Poisson sum relative to path length inarray tries, F (x) =Xh uh �1� e�xuh� ;(67)is typical. Sums very much like (67) involving an exponential occur in the analysisof Poisson models; see Theorem 1. On the other hand, by algebraic depoissonization(12), (13), the Bernoulli model leads to sums exempli�ed by the counterpart of (67),G(x) =Xh uh (1� (1� uh)x) ;(68)see Theorem 2. The problem of analysing asymptotically (68) is a bit trickier thanthat of (67).The approach developed here is based on approximating directly the singularitiesof a Dirichlet series (the one associated to the Bernoulli model) by the singularitiesof another simpler series (the one arising from the Poisson model), this in theperspective of Mellin analysis. The approach, called Dirichlet depoissonization, isbrie�y introduced and put to use for the analysis of multidimensional search, butwithout much justi�cation, in [19]. It will be immediately realized that the heartof the matter lies in the following result.Proposition 12 (Dirichlet depoissonization). Let uh ! 0 with uh positive. De�nethe two Dirichlet series
(s) =Xh ush; e
(s) =Xh �log 11� uh�s :



44 CLÉMENT, FLAJOLET, VALLÉEAssume that 
(s) has a nonempty domain of convergence, is meromorphically con-tinuable to the whole of C , and is in any �nite strip of polynomial growth in theweak asymptotic sense. Then the same properties hold for e
(s). In addition, thesingularities of 
; e
 are related bySing(e
) = fs� k j s 2 Sing(
) and k 2 Ng ;and the singular expansions of 
(s) and e
(s) are related bye
(s) � 
(s) + c1(s)
(s + 1) + c2(s)
(s+ 2) + � � � ;(69)where cj(s) = [xj ] exp�s log( 1x log 11� x )� :(The term �weak� refers again to the fact that growth need only be controlledon certain parallels to the real axis tending to �i1.)Proof. What we want to do is justify the chain of formal transformations,e
(s) � Xuhs exp�s log�1 + 12uh + 13uh2 + � � ���� Xuhs exp�s� 12uh + 524uh2 + � � ���� Xuhs�1 + 12suh + ( 524s+ 18s2 )uh2 + (18s+ 548s2 + 148s3)uh3 + � � ��� 
(s) + c1(s)
(s+ 1) + c2(s)
(s+ 2) + � � � :Let �0 denotes the abscissa of convergence of 
(s). The indices of the uh have beendropped and it is assumed implicitly that sums range over the whole set of possiblefuhg. We also �x an (arbitrary) integerm that will control the order of expansions.Analytic continuation. In a �rst pass, we consider the problem of transforming
(s) in a way that ensures analytic continuation, but without worrying aboutuniformity with respect to s. We assume that Re(s) > �0. First, since uh ! 0,Taylor expansions producelog� 1u log(1� u)�1� = D(u) +O(um+1) (u! 0);for some computable polynomial D of degree m. Thus,e
(s) =Xus exp(sD(u)) � exp(O(um+1)):Now, exp(O(um+1)) = 1 +O(um+1) (u! 0):In particular, the di�erence�(s) := e
(s)�Xus exp(sD(u))(70)has its general term that decreases like O(u�+m+1), where � = Re(s). It is inparticular analytic in Re(s) � �0 �m.Next, we turn to 
1(s) =Xus exp(sD(u));



DYNAMICAL SOURCES AND TRIES 45for which one hasexp(sD(u)) = 1 + c1(s)u+ c2(s)u2 + � � �+ cm(s)um +O(um+1);where the cj are obtained by Equation (12). Indeed, for any �xed s , the quantitysD(u) lies in a neighbourhood of 0 for which the expansion of exp(v) = 1 + v +� � �+O(vm+1) is applicable. Thus, the di�erence�1(s) = 
1(s)� (
(s) + c1(s)
(s+ 1) + � � �+ cm(s)
(s+m))(71)has its general term that decreases like u�+m+1 so that it is analytic in Re(s) ��0 �m. Equations (70) and (71) imply thate
(s) = �(s) + �1(s) + (
(s) + c1(s)
(s+ 1) + � � �+ cm(s)
(s +m))originally de�ned for Re(s) > �0 is meromorphic Re(s) � �0�m. Since m was �xedarbitrarily at the beginning, meromorphicity of e
(s) in the whole of C results. Inaddition, the singularities of e
 are those of 
 shifted by 0; 1; 2; : : : , and the singularexpansion (69) is justi�ed.Growth. There remains to examine the growth of e
(s) as Im(s)! �1. This isachieved by modifying the previous proof, taking uniformity with respect to s intoaccount. We may assume that Re(s) < �0 + 1, since it is analytic continuation tothe left that matters. The basic idea is thatexp(sO(um+1))� 1 = (O(1) = O(jsjum+1) if jsjum+1 > 1O(jsjum+1) if jsjum+1 � 1.(72)The �rst line is justi�ed by the fact that u is real and Re(s) is bounded fromabove, so that we have a bound of O(1) that is replaced by the less precise estimateO(jsjum+1); the second line follows from the standard expansion of ex� 1 near theorigin. Consequently, the function �(s) de�ned in Eq. (70) is O(jsj) for Re(s) ��0 �m.In a manner similar to (72), separating the two cases jsju > 1 and jsju � 1 yieldsa uniform version of (70):exp(sD(u)) = 1 + c1(s)u+ c2(s)u2 + � � �+ cm(s)um +O(jsjm+1um+1);There results that �1(s) is, for Re(s) � �0 � m, of growth at most O(jsjm+1).Therefore, e
(s) is a sum of quantities of the form cj(s)�(s+ j) and of an analyticquantity �(s) + �1(s) that is O(jsjm+1). It is thus of weak polynomial growth inRe(s) � �0 �m. Since m is chosen arbitrarily, the result follows.The argument adapts to the more general pair of Dirichlet series
(s) =Xh �hush; e
(s) =Xh �h�log 11� uh�s ;with �h > 0, and the property stated in Proposition 12 still holds in this case.



46 CLÉMENT, FLAJOLET, VALLÉE6.5. Asymptotics in the Bernoulli model. The principle of Dirichlet depois-sonization shows that the only poles introduced by the method are at distance atleast one from the dominant poles arising from the Poisson model. Consequently,the estimates of Theorem 5 remain valid in that case.Theorem 6 (Asymptotics in the Bernoulli model, �nite alphabet). Under theBernoulli model of parameter n and for a source with a �nite alphabet, the O(n)character of the expected trie size and the O(n logn) character of the expected pathlengths hold: the estimates given in Theorem 5 remain valid provided the Poissonparameter z is replaced by the Bernoulli parameter n.Proposition 11 is similarly susceptible to extensions in the Bernoulli model.7. Asymptotic analysis of heightFinally, we consider the last parameter, the height. We �rst perform an asymptoticreduction to a harmonic sum from which the asymptotic form of the expectedheight in the Poisson model derives painlessly. A further step of saddle pointdepoissonization provides the �nal result under the Bernoulli model.7.1. Double exponential approximation. The expectation of height in a Pois-son model relative to a rate z, a source S, and an initial distribution F , is expressedby the in�nite sum (see Theorem 3):E[h;Pz; S; F ] = 1Xk=0 [1� �k(z)] ; with �k(z) = Yjhj=k(1 + zuh)e�zuh(73)Such a series does not fall directly in the orbit of Mellin transform techniques butit can be well approximated by a harmonic sum. Indeed, the Quasi-Power Propertyof Proposition 5 provides the existence of a constant � de�ned by� := 12 limk!1 �hAik (F; 2)�(2)k :(74)The following result gives �rst an asymptotic approximation to the distribution �kstated under a strong form of L1-convergence.Proposition 13. The distribution of trie height under the Poisson model admitsa double exponential approximation: the two sequences�k(z) = Yjhj=k(1 + zuh)e�zuh ; b�k(z) := exp[��z2�(2)k];satisfy Xk�0 [�k(z)� b�k(z)] = o(1):Proof. We use the fact that log�k(z) is a harmonic sum relative to �hAik (F; s) andproceed in two steps.First step. First, we compare �k(z) with e�k(z) wheree�k(z) = Yjhj=k exp[�z2uh22 ] = exp(�z22 Xjhj=kuh2);



DYNAMICAL SOURCES AND TRIES 47Choose an arbitrary number d in the interval� 3 log zj log�(3)j ; 2 log zj log�(2)j�and set �(z) := bd log zc :The existence of these quantities is granted by the strict inequalitylog�(2)= log�(3) < 2=3 of assertion (ii) of Proposition 6. Then, there exist positivenumbers �; �0 and � 2 [0; 1[ such that the following three properties hold:(C1) : z2�2�(z) � z� (C2) : z3�3�(z) � z��0 ; (C3) : (8h; jhj � �(z)) zuh � �:The sum in (73) is split into two parts (left tail; central domain and right tail)according to the integer �(z).(i) Left tail. We �rst consider the part relative to indices k � �(z). The inequal-ity (true for x � 0) exp(�x22 ) � (1 + x)e�x � exp(� x22(1 + x) )implies thate�k(z)� �k(z) � exp(�z22 Xjhj=k uh2)� exp(�z22 Xjhj=k uh21 + zuh ):(75)This introduces the sequence Bk = 12 Xjhj=k uh21 + zuh :For any positive sequence (ai)i2I of sum s, the inequalityXi2I ai21 + ai � s21 + sholds, and this implies that Bk is decreasing. This fact, in conjunction with theMean Value Theorem, entails the inequalitye�k(z)� �k(z) � z3 exp[�z2B�(z)]:Now, Property (C3) of index �(z), the Quasi-Power Property, and �nally Property(C1) of index �(z) imply thatXk��(z) e�k(z)� �k(z) � �(z) z3 exp[�dz�] = o(1)(76)(ii) Central domain and right tail. The second part of the sum relative to k >�(z) is also o(1). Indeed, the inequality�k(z)� e�k(z) � log�k(z)� log e�k(z):and the relationslog�k(z) � Xjhj=k �� (zuh)22 + (zuh)33 � ; log e�k(z) = � Xjhj=k (zuh)22 ;



48 CLÉMENT, FLAJOLET, VALLÉEentail that �k(z)� e�k(z) � z3 Xjhj=k uh3:Once again, the Quasi-Power Property at s = 3 in conjunction with Property (C2)of index �(z) yields the following inequalitiesXk��(z) [�k(z)� e�k(z)] � d0z3 Xk��(z) �3k = d0z3 �3�(z)1� �3 � z��0 = o(1):(77)Second step. The distribution e�k(z) under the Poisson model is thus wellapproximated by b�k(z) = exp [��z2�(2)k]. The Quasi-Power Property once againprovides two constants d1 and d2 such that the following two inequalities hold������12 Xjhj=k uh2 � ��(2)k������ � d1 �k; Xjhj=k uh2 � 2d2 �(2)k;where � lies strictly between the dominant eigenvalue �(2) and the modulus �(2)of a subdominant eigenvalue of the operator G2. Hence, the inequalities������Xk�0 e�k(z)� b�k(z)������ �Xk�0 je�k(z)� b�k(z)j � d1z2Xk�0 �k exp[�d2 z2 �(2)k];(78)entail, by an elementary argument or by Mellin transforms, thatXk�0 �k exp [�d2z2�(2)k] = o(1):(79)Finally, Equations (76), (77) and (79) imply the result.7.2. Distribution of height under a Poisson model. First, note that Equa-tions (76), (77) and (79) provide the asymptotic distribution of height bhz in themodel (Pz ; S; F ), since they entaillimz!1 supk�0 ���Pr [bhz < k]� exp [��z2�(2)k]��� = 0:On the other hand, the harmonic sum that approximates the average height ina Poisson model D(z) = 1Xk=0�1� exp[��z2�(2)k]� ;(80)has Mellin transform D�(s) = �12 ��s=2 �(s=2)1� �(2)�s=2 :This is a textbook example of a Mellin analysis. The fundamental strip is h�2; 0i,with the singular expansion at s = 0 beingD�(s) � � 2log�(2) 1s2 + �
 � log �log�(2) � 12� 1s (s = 0):There are also regularly spaced poles on the line Re(s) = 0 that entail periodic�uctuations. We can state:



DYNAMICAL SOURCES AND TRIES 49Theorem 7 (Asymptotic height under the Poisson model). In the Poisson modelof rate z relative to a source S with initial distribution F , the average height isbH(z) = 2j log�(2)j log z +QF (log z)� �
 � log �log�(2) � 12�+ o(1);where � is a positive constant depending on the source (S; F ) and QF (u) is a periodicfunction of very small amplitude.Moreover, the asymptotic distribution of height is of double exponential type,limz!1 supk�0 ���Prfbhz < kg � exp [��z2�(2)k]��� = 0:7.3. Height under the Bernoulli model. We �rst recall the notations of The-orem 4. The quantity �k;n denotes the probability that a trie built on an n�tupleof random items has height at most k under the Bernoulli model. The exponentialgenerating function �k(z) of the �k;n has value�k(z) := Yjhj=k (1 + zuh) :In the case of a memoryless source, the analysis can be conducted from thereusing the saddle point method [16, 20] and it even becomes completely elementaryin the case of unbiased binary tries; see [39]. We propose to follow precisely thesame approach in order to analyse height in the case of a general dynamical source.The reader is also referred to Jacquet and Szpankowski's interesting paper [29] fora general framework of saddle-point depoissonization (under the name of �analyticdepoissonization�).The formal idea of the analysis is the following: Start with the Cauchy integralformula �k;n = n!2i� Z
 �k(z) dzzn+1 ;(81)where 
 is a simple closed contour encircling positively the origin. Since one has,for any x 2 (0;+1) and an arbitrary �xed m:log(1 + x) = x1 � x22 + x33 � � � �+ (�1)m�1 xm�1m� 1 +O(xm);the �exp-log� transformation applied to the integrand gives�k(z) = expX log(1 + zuh)= exp�zXuh � z22 Xuh2 + z33 Xuh3 � � � �+O(zmXuhm)� ;(82)where all the sums are taken over jhj = k. Retaining only the �rst two terms in (82)leads us to expect, for suitable values of k at least, the validity of the approximation�k;n � n!2i� Z
 exp��z22 Xuh2� ez dzzn+1 :(83)This may now be viewed as a perturbation of the Cauchy coe�cient integral appliedto ez. But it is well-known that the latter integral can be estimated by the saddlepoint method [10] which consists in the following steps:



50 CLÉMENT, FLAJOLET, VALLÉE(i) integrate along the circle jzj = n (an approximate saddle point of the inte-grand);(ii) observe that the contribution is concentrated in a small sector nei� with j�j ��0 and �0 = n�1=2+� for any � such that 0 < � < 16 (this conditions ensuresthat one has simultaneously n�02 ! +1 while n�03 ! 0);(iii) �nally reduce the integral asymptotically to a complete Gaussian integral thatcan be evaluated.In the case of ez, this is of course one of the standard ways of deriving Stirling'sformula for 1=n!. If we regard the factor of ez=zn+1 as almost constant on the tinyfraction of the integration contour that matters, we are then led to the approxima-tions �k;n � n!2i� exp��n22 Xuh2�Z
0 ez dzzn+1� exp��n22 Xu2h�(84) � exp ���n2�(2)k� ;(85)in view of the saddle point integral of ez=zn+1, of Stirling's formula for (84), andof basic results relative to fundamental intervals for (85). The estimate (85) isnothing but the double-exponential approximation of the distribution that wasalready encountered under the Poisson model. It involves the constant � alreadyde�ned in (74).Theorem 8 (Asymptotic height under the Bernoulli model). Under the Bernoullimodel of parameter n, the logarithmic character of the expected trie height and theuniform double exponential approximation hold: the estimates given in Theorem 6remain valid provided the Poisson parameter z is replaced by the Bernoulli param-eter n.Proof. We now explain how to make the preceding strategy fully rigorous. Weconsider a small constant � with 0 < � < 16 , and we set�0 = n�1=2+�; 
 = fnei� �� j�j � �g; 
0 = fnei� �� j�j � �0g:The argument needs to distinguish two domains of variation of k with a boundary�1(n) that is �1(n) = bd lognc ;for a constant d chosen to satisfy the following constraints that are re�nements ofconstraints already encountered in the study of the Poisson model.(C1) d < 2=j log�(2)j, which ensures that for k = �1(n), the term n2�(2)kis of exact order �(n�0) with �0 > 0.(C2) d > 2=j log �j, where � is strictly enclosed between the dominanteigenvalue �(2) and the modulus � of a subdominant eigenvalueof the operator G2. This makes the approximation n2Pu2h �2�n2�(2)k accurate to O(n��1) absolute error as soon as k � �1(n)(see Eq. (59).(C3) d > 3=j log�(3)j, so that for k � �1(n), the cubic terms n3�(3)k areO(n��2) (with �2 > 0) and can be neglected;



DYNAMICAL SOURCES AND TRIES 51(C4) d > (1+2�)=j log�(2)j, which ensures that the terms n2�(2)k�02 areO(n��3) (with �3 > 0) for k � �1(n). This is a technical requirementneeded to validate a saddle point perturbation estimate.Observe that (C1) and (C3) are compatible given the log-concavity properties of�(�) while the compatibility of (C1) on the one hand, (C2) and (C4) on the otherhand is automatically granted. Consequently, the constant d can be chosen any-where in the interval�max� 3j log�(3)j ; 2j log �j ; 1 + 2�j log�(2)j� ; 2j log�(2)j� :We also need repeatedly estimates of the form jeh(z)j for z = nei� and h(z) =z � cz2 with c = �(2)k small. One hasgn(�) := log ���eh(nei�)��� = Re(h(nei�)) = n cos � � cn2 cos(2�):An elementary study shows that for n large enough and cn = o(1) (this is grantedfor c = �(2)k and k � �1(n) by (C4)), gn(�) attains uniquely its maximum on(��;+�) at � = 0 and is unimodal on (��2 ;+�2 ).(i) Left tail. At k = �1(n) and on the circle z = nei�, we have, with condition(C1), log j�k(z)j � n cos � � c0n�0 ;for some c0 > 0 and �0 > 0, since the quadratic term dominates and is of exactorder �(n�0). Thus, trivial bounds applied to the Cauchy integral entail��1(n);n � n!ennn � e�c0n�0 ;(86)which corresponds to the left tail of the distribution, k � �1(n), being globallyexponentially small.(ii) Central domain and right tail. For k � �1(n), we need to check that thesaddle point method applies. On the part 
 n 
0 of the contour, we have for n largeenough j�k(z)j � ��en cos �0 exp ���n2�(2)k +O(n2�k) +O(n3�(3)k)��� :But conditions (C2) and (C3) imply that the contribution of the integral in thenoncentral region 
 n 
0 satis�es����� n!2i� Z
n
0 �k(z) dzzn+1 ����� � n!nn sup
n
0 j�k(z)j = O �exp[�n�02=4] exp[��n2�(2)k ]� :(87)(We used a replacement of �02=2 by �02=4 in order to absorb terms of the form pnthat come from Stirling Formula). From (87), the contribution on 
 n 
0 is thusexponentially small.



52 CLÉMENT, FLAJOLET, VALLÉEFor similar reasons, the quantity �k(z) in the central region 
0 satis�es, for some�3 > 0, �k(z) = exp �z � �z2�(2)k +O(n2�k) +O(n3�(3)k)�= ez exp[��n2�(2)k ] �1 +O( 1n�3 )� :(88)This results from conditions (C2); (C3), and condition (C4) ensures that the varia-tion of z2�(2)k on 
0 is bounded.Since the Cauchy coe�cient integral applied to ez yields 1=n!, given thebound (87) on 
 n 
0 and the uniform approximation (88) on 
0, we concludethat, for k � �1(n), �k;n = exp[��n2�(2)k] �1 +O( 1n�3 )� :(89)Equations (86) and (89) thus fully characterize the whole domain k � 1. Theyestablish an approximation of the very same type as in the the Poisson model. Theproof is now completed.As a methodological aside, we observe that the proof given above essentiallyamounts to a lifting of the estimates established for large real values of the Poissonparameter z to the case where z assumes values on (parts of) a large complex circlez = nei�. This fact is in agreement with the general principles of saddle-pointdepoissonization [16, 29]. It is also to be noted, following [16], that the doubleexponential limit formula for the distribution of height is not a limit probabilitydistribution in the strictest classical sense: setting�0(n) := � log(�n2)j log�(2)j�and leaving aside error terms, we have��0(n)+j;n � e��(n)�(2)j where �(n) = � 1�(2)�flog(�n2)=j log �(2)jg ;(90)with fug the fractional part function. In other words, the distribution is a discretesampling of the double exponential function, as expressed by (89). Equivalently,there is a family (90) of distributions (governed by the bounded parameter �(n))that change gradually and periodically as n increases through powers of 1=�(2).Such periodicity phenomena expressed by discrete samplings of an extreme valuedistribution are by now fairly common in tries; see for instance [33] for a detaileddiscussion. 8. ApplicationsWe brie�y develop here three main applications to Bernoulli sources, Markov chains,and the continued fraction source. Statements here are specializations of Theo-rems 1 to 8 of the paper; they are systematically given under the Bernoulli modelof index n and simpli�ed forms are often stated so as to emphasize better the shapeof results. We then conclude with a few open problems.



DYNAMICAL SOURCES AND TRIES 538.1. Memoryless sources. Memoryless sources are sources on a �nite or in�nitealphabet M, where symbol m occurs independently with probability pm. Thestandard Ruelle operator associated to the system isGs[f ](z) := Xm2M psm f(qm + pmz); with qm := Xi<m pi:The dominant eigenfunction is the same for each component operator Gs;h andit equals the constant function, for all values of s;Re(s) > �; then, the constantfunction is also the dominant eigenfunction of Gs itself, for all values of s, and�(s) =Pm2M psm is the dominant eigenvalue. The dominant projector es[f ] is theintegral R 10 f(t)dt. More generally, the spectrum of Gs isSpGs = f�`(s) := Xm2M ps+`m ; ` � 0g;so that the Fredholm determinant isF(s; u) = Ỳ�0 [1� u Xm2M pm`+s]:The eigenvector relative to the `-th eigenvalue �`(s) is a polynomial of degree `. Forsymmetric memoryless sources, this `th eigenvalue is independent of s and in thecase of two symbols, the family of eigenfunctions coincides exactly with Bernoullipolynomials [4], de�ned by B`(z) := `! [t`] teztet � 1 :The results obtained here are to be compared to the classical results on digitaltrees built on a �nite alphabetM = f1; 2; : : : ; rg where symbol i has probability pi.We state3Corollary 1. Consider a �nite memoryless source S with �nite alphabet of car-dinality r and probabilities fpigri=1. The entropy and the coincidence probabilitiesare h(S) = �Xi pi log pi; c(S) =Xi p2i :(i) Trie size and standard path length have expectations of the formS(n) � 1h(S)n; P (n) � n lognh(S) :(ii) Trie height has asymptotically a double exponential distribution with meanH(n) � 2j log c(S)j logn:(iii) The path lengths of hybrid tries satisfyPL(n) = KL(S)h(S) n logn; PB(n) = KL(S)h(S) n logn;3We use the notation `�' for `approximately equal', (as opposed to `�' reserved for the moreprecise `asymptotically equivalent'), i.e., up to possible �uctuations induced by nonreal poles.



54 CLÉMENT, FLAJOLET, VALLÉEwhere KL(S) = rXi=1(i� 1)pi; KB(S) = 2Xi<j pipjpi + � � �+ pj :The statements relative to path length and height extend the analyses of [43,54, 55] to the case of a general analytic density. The analysis of hybrid tries wasalready given in [7]. Devroye [11] considered the e�ect on the unbiased memorylesssource (p1 = p2 = 12 ) of a density that need not be analytic. Devroye showedthat either H(n) � 2 logn or H(n) = +1 depending on whether R f2 (with f thedensity) exist or not, and that P (n) � n logn as soon as f is square integrable.Quite often, authors do not take into account the possible periodic �uctuationsthat may occur in the main asymptotic estimate of size. Here are some examplesof periodic memoryless sources:(1=2; 1=4; 1=4); (p; p; p2) with p = (1=2)(p2�1); (pm)m�1 with pm = (1=2)m:The case when the Fredholm determinant is pseudo�periodic, i.e.,F(s+ it; u) = F(s; eiau) with a 6= 2k�is also interesting. A Bernoulli source is pseudo�periodic if and only if there existtwo real numbers a and b such that b does not belong to the cyclic group < a >generated by a and all the numbers pm=b belong to this cyclic group < a >. Aninstance of this situation is (2=5; 2=5; 1=5). As noted by Pollicott [44] and Fayolleet al. [15], there is an accumulation of s for which �(s) = 1 on the left of the lineRe(s) = 1. Our improved Mellin argument of Prop. 12 shows directly that the totalcontribution of these poles contributes a term to the asymptotic expansion of sizethat remains o(n), and a term o(n logn) in the expansion of path length.8.2. Markov chains. We consider now the particular case of Markov chains. Here,the alphabetM is �nite, of cardinality r, and the matrix �s whose general term ispijjs plays a central rôle. For s = 1, it is the transition matrix of the Markov chain.The spectrum of the matrix operator Gs is exactly the union of the spectra of thematrices �s+`, for all integers ` � 0, so thatSpGs = [̀�0 Sp �s+` F(s; u) = Ỳ�0 det(I � u�s+`):If the eigenvalues of matrix �s are denoted by �(i)(s) for 1 � i � r, thenSpGs = f�(i)(s+ `) j1 � i � r; ` � 0g;and the eigenvector relative to eigenvalue �(i)(s + `) has all its components thatare polynomials of degree `. Finally, the dominant eigenvalue of the operator Gs isexactly the dominant eigenvalue of the matrix �s, and the associated eigenfunctionhas all its components that are constants. Finally, the k-th component of theeigenfunction 	1 is nothing more than the vector of stationary probabilities of theMarkov chain.Corollary 2. Consider a Markov chain S with transition probabili-ties fpijjg1�i;j�r. The entropy and the coincidence probabilities areh(S) = �Xk �kXj pjjk log pjjk; c(S) = �(2)



DYNAMICAL SOURCES AND TRIES 55where �k the k-th component of the vector of stationary probabilities of the Markovchain, and �(2) is the dominant eigenvalue of the termwise squared matrix �pijj2�.(i) Trie size and standard path length have expectations of the formS(n) � 1h(S)n; P (n) � 1h(S)n logn:(ii) Trie height has asymptotically a double exponential distribution with meanH(n) � 2j log�(2)j logn:(iii) The expected values of path length in hybrid tries satisfyPL(n) � KL(S)h(S) n logn; PB(n) � KB(S)h(S) n logn;where,KL(S) =Xk �kXi (i� 1)pi j k; KB(S) = 2Xk �kXi<j pijkpjjkpijk + � � �+ pjjk :As mentioned in the introduction, this result supplements reference [26].8.3. The continued fraction source. Preliminary results about the continuedfraction source have been already reported in [21], but were limited to an initialdensity that is uniform. The Ruelle operator in this case is called the Ruelle�Mayeroperator, Gs[f ](z) := Xm�1 1(m+ z)2s f( 1m+ z );and convergence is granted for complex s satisfying Re(s) > 1=2.The entropy of the source is related to what is known as Lévy's constant thatplays a key rôle in the metric theory of continued fractions and the analysis of theEuclidean algorithm. The coincidence probability �(2) relative to the Ruelle Mayer�operator is a constant, sometimes known as �Vallée's constant�, that intervenes intwo�dimensional generalizations of the Euclidean algorithm [9, 21, 58]. (For theseaspects, see also [21] and references therein.) The dominant eigenfunction of G1,known as Gauss's measure, is proportional to 1=(1 + x).Corollary 3. Consider the continued fraction source S and any initial density thatis analytic. The entropy and the coincidence probability areh(S) = ��0(1) = �26 log 2 c(S) = �(2) := 0:19945 88183 43767:(i) The expected values of size and path length satisfyS(n) = 6 log 2�2 n+ o(n); PA(n) = 6 log 2�2 n logn+O(n):(ii) Height obeys a double exponential law with meanH(n) = 2j log�(2)j logn+O(1):



56 CLÉMENT, FLAJOLET, VALLÉE(iii) The expected values of path length in hybrid tries satisfyPL(n) � 3 log 22�2 n log2 nPB(n) � Cn logn with C := 3�2 241 + 4Xk�2 1k2 � 1 log k + 12 35 :The example of the continued fraction source is interesting, on many counts.First, as stated in (iii) above, the average path lengths PL(n) of the list-trie and theaverage path length PB(n) of the bst-trie turn out not to be of the same asymptoticorder. when n tends to 1. (Not too unexpectedly, the continued fraction sourceresembles a generalized Zipf source of parameter � = 2; see Section 6.3.) Second,periodicity related issues are particularly fascinating.The continued fraction source is aperiodic, and the poles of (I�Gs)�1 intervene indeep mathematical problems: They include all the nontrivial zeros of the Riemannzeta function. The other values s for which Gs has eigenvalue 1 are related to theeigenvalues of the hyperbolic Laplace operators and they lie on the line Re(s) = 1=2(see Efrat's paper [12]). However, these last values do not occur as poles of theDirichlet series �hAi(Id; s). In e�ect, in the half-plane Re(s) > 0, the Dirichletseries �(Id; s) can be represented as (see Prop. 2, 3 of [21])�(s) � �hAi(Id; s) = 2�(2s� 1)�(2s) 21�s � 11� s + R(s)�(2s)where R(s) is analytic in Re(s) > 0. So, when the initial density is uniform, theasymptotic expansions of S(n) or PA(n) given in Theorem 6 solely involve thenontrivial zeros of the Riemann zeta function. For an arbitrary density, the samesituation occurs, because the eigenvectors f of the hyperbolic Laplace operatorssatisfy R 10 f(x)dx = 0, as pointed out to us by [40]. Thus, the nature of second orderasymptotics of additive parameters must be related to the Riemann hypothesis.Corollary 4. The �uctuations in the mean value of path length and size of standardtries under the continued fraction source are related to the Riemann hypothesis. Forinstance, for size, one hasS(n) = 6 log 2�2 n+�(n) + O(1);where �(n) is a sum indexed by the set Z of zeros of the Riemann zeta function inthe critical strip 0 < Re(s) < 1,�(n) = X�2ZRes ��(�s)�(s+ 1)n�s�s=�=2 :(91)In particular, under the Riemann hypothesis (R.H.), we have �(n) = O(n1=4+�)for any � > 0. In addition, unconditionally with respect to R.H., the following twoimplications hold.(i) If �0 = supfRe(�); � 2 Zg, then, for any � > 0, one haslimn!1 �(n)n�0=2+� = 0:



DYNAMICAL SOURCES AND TRIES 57(ii) Conversely, if �1 is the supremum of all � such that �(n)=n�=2 is unbounded,then �(s) has at least one zero in Re(s) � �1.Proof. Equation (91) follows, at least formally, from a residue computation along alarge rectangle (�11=10� iT; 1=10� iT ). Analytically, (91) is then justi�ed by thefact that �(s) grows somewhat large along horizontal lines that traverse the criticalstrip at high altitudes, thereby avoiding zeros in the critical strip. Accordingly,1=�(s) is of weak polynomial growth in a strip that contains the critical strip. Thislast fact is granted by known properties of the Riemann zeta function; we omitdetails as they are entirely similar to the discussion of a formula of Ramanujan inTitchmarsh's book [56]; see Sections 9.7 and 9.8.Once (91) is granted, the other implications follow easily.Numerical aspects of �uctuations. We o�er here a succinct discussion of the �uc-tuating function �(n). We know, from the preceding discussion, that the function�(s) is of weak polynomial growth. Let �[T0](n) be the truncated sum of (91)restricted to zeros � of the zeta function such that jIm(�)j � T0. The di�erence,j�(n)��[T0](n)j is the product of a polynomial in T0 and of a quantity that is ap-proximately e��T0=2n1=2, given the fast exponential decay of the Gamma functionat �i1. In this discussion, we use := in the informal sense of `roughly equal'.Take for instance T0 = 5� 108 corresponding to the �rst 1:5� 109 zeros of thezeta function, as computed by van de Lune, te Riele and Winter in 1986. Thesezeros all satisfy the Riemann hypothesis. Forgetting about ancillary polynomialfactors, an upper bound on the truncation error, when the terms corresponding tothe high zeros of Z are neglected, is then at worstj�(n)��[T0](n)j � E1(n) where E1(n) := �10�6�109 � n�1=2 :This is thus totally negligible for all values of n less than huge threshold of about106�109 .For all practical purposes here the Riemann hypothesis is thus to be regardedas �true�. We next focus attention on the �rst few terms in (91). Two ingredientsintervene: the fast decay of the Gamma function and the fact that the �rst nonrealzeros of the zeta function have a fairly large imaginary part, being at �1; �2 =12 � 14:134i. Assuming for the sake of illustration that the residue of �(�s) at�1; �2 is of modulus at most 50, the corresponding contribution to �(n) �the onethat should be numerically dominating anyway� is now bounded from above by(8 � 10�7) � n1=4: The next zeros are farther away where the Gamma function iseven smaller, so that we may reasonably expectj�(n)j � 10�6 � n1=4 for n � 106�109 :This quantity will become 1 only for n about 1024.In summary, the Riemann hypothesis, whether true or false, does not really a�ectthe physical nature of the �uctuations. In addition, �(n), even though it oscillatesfrom �1 to +1, is still going not to be detectable until n is quite large (n > 1024).Fluctuations will be in particular completely o�set by the constant term in the ex-pansion of S(n). This fact is also interesting since it provides a naturally occurringinstance of the �Dumont phenomenon� (�rst discovered by Dumont in the 1980's



58 CLÉMENT, FLAJOLET, VALLÉEand proved rigorously by Delange). The surprising phenomenon is that, empiricallyfor values of x very close to 1, one has apparently the numerical convergence1Xn=1�(n)xn ?�! 1�(0) = �2; (x! 1�);(�(n) is the Moebius function), although, in reality, the left hand side eventuallyoscillates unboundedly as n! +1.8.4. Extensions and open problems. For reasons related to database applica-tions [13, 36], one often considers the variant of tries called bucket tries or b-tries,where recursion is halted as soon as subsets of words with cardinality � b are en-countered. (Standard tries correspond to b = 1 and subtrees of size � b are thenstored in �buckets� or �pages�.). The framework developed in this paper appliesalmost verbatim, so that we only indicate brie�y the corresponding conclusions.Corollary 5. For bucket tries with parameter b, height obeys a double exponentiallaw limn!1 supk�0 ��Prfhn � kg � exp[��b �(b+ 1)k nb+1]�� = 0;for some �b > 0 and its expected value satis�esE[hn] � b+ 1j log�(b+ 1)j logn:Size, de�ned as the number of internal nodes of the tree, has meanS(n) � 1b h(S) n:Various types of path lengths can be de�ned and similarly analysed: on average,a random branch in the tree still has depth logn=h(S) and it is only an O(1) termthat modi�es the corresponding estimate of standard tries. It is to be noted that theparameters governing the distribution of height change radically, while the estimatefor size shows that pages tend to be used to a fraction h(S) of their capacity sinceon average a b-trie behaves in a way quantitatively similar to a perfect packing intopages of capacity b � h(S).Preliminary investigations suggest that our theory may also applicable to su�xtrees, despite di�culties due to correlations inherently present in that structure;see [27] for a treatment of classical models.Globally, we may regard standard trie height as �well known�, since its momentsand its distribution are well characterized. We leave as an open problem of interestthe following question.(P1) Analysis of the height of hybrid tries (list tries and bst-tries), where heightis de�ned as the length of the maximal chain of pointers connecting the root to anyexternal node. Perhaps probabilistic methods might be of use, since the problemamounts to determining the �balance� between the few long branches of the abstracttrie and the many large collections of long branches inside structured nodes.For additive parameters under general source models, little distributional infor-mation is available at the moment, even for standard tries. Here is a set of threeopen problems.
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