Parsing with a finite dictionary

Julien Clément? , Jean-Pierre Duval® , Giovanna Guaiana” |

Dominique Perrin? and Giuseppina Rindone #

aInstitut Gaspard-Monge, Université de Marne-la- Vallée, France
PLIFAR, Université de Rouen, France

Abstract

We address the following issue: given a word w € A* and a set of n nonempty words
X, how to determine efficiently whether w € X* or not? We discuss several methods
including an O(r x |w| 4+ |X|) algorithm for this problem where < n is the length
of a longest suffix chain of X and |X]| is the sum of the lengths of words in X. We
also consider the more general problem of providing all the decompositions of w in
words of X.

Key words: Finite automata, string matching

1 Introduction

The complexity of algorithms related to finite automata and regular expres-
sions is well-known in general. In this article, we focus on a particular problem,
namely the complexity of parsing a regular language of the form Y = X* where
X is a finite set of nonempty words. This type of language occurs often in the
applications, when X is a dictionary and Y is the set of texts obtained by
arbitrary concatenations of strings from this dictionary. The time and space
complexity can be an important issue in such applications since the dictionar-
ies used for natural languages can contain up to several million words.

As a consequence of general constructions from automata theory, any regular
language can be parsed in time proportional to the product of the size of the

Email addresses: Julien.Clement@univ-mlv.fr (Julien Clément),
Jean-Pierre.Duval@univ-rouen.fr (Jean-Pierre Duval),
Giovanna.Guaiana@univ-rouen.fr (Giovanna Guaiana),
Dominique.Perrin@univ-mlv.fr (Dominique Perrin),
Giuseppina.Rindone@univ-mlv.fr (Giuseppina Rindone).

Preprint submitted to Elsevier Science 10 January 2005

regular expression by the length of the input word. This just amounts to simu-
lating a nondeterministic automaton built in a standard way from the regular
expression. Using a deterministic automaton produces a linear-time algorithm
after completing a determinization algorithm which may itself be exponential.

Our main result here is an algorithm allowing to parse a regular language
of the form X* with X finite, in time O(r X |w| + |X|) with r the length
of a longest suffix chain in X, w the input word and |X| the sum of the
lengths of words in X (Sections 4 and 5). The quantity r depending only on
the set X is upper-bounded by Card(X). This algorithm allows to get all the
decompositions of the input word in words of X. We also discuss some further
problems on the automata related to regular expressions of this type (Section

3).

The motivation of our study is in the work of Schiitzenberger on this type
of languages. He has shown that although the size of the automaton depends
on the length of the words in X, several syntactic parameters depend only
on the cardinality of X (see [1]). One of them is linked with the number
of interpretations of a word in words of X, and is related with the problem
considered here.

A similar yet unsolved problem is the complexity of the problem of unambi-
guity of the expression X*, i.e. of the problem of testing whether X is a code.
The standard algorithm [2] gives a quadratic complexity O(|X|*) where | X | is
the total length of the words of X. It was lowered later to O(Card(X) x | X])
by various authors [3-6]. However it is not known whether there exists a linear
algorithm (see [7]).

2 Preliminaries and notations

For a more complete description of automata and fundamentals of formal
languages, the reader is referred to [8-10] and to [11] in particular for a recent
overview on recognizable languages in free monoids.

Let A be a finite alphabet. We denote by ¢ the empty word and by A* (resp.
A™) the set of finite words (resp. nonempty finite words) on A. For a word
w € A*, we denote by |w| the length of w, by w[j] for 0 < j < |w| the letter
of index j in w, and by wlj..k] = w[jlw[j + 1] - - - w[k]. For any decomposition
w = uv with u,v € A* we say that u and v are respectively a prefiz and a
suffiz of w. The suffix v is said to be proper if v # w.

For a finite set X of words on A, we denote by Pref(X) and Suff(X) the
set of prefixes and suffixes of the words of X respectively, by Card(X) the

cardinality of X and by |X| the sum of the lengths of words of X, that is

(X[=2 |

zeX

We denote a nondeterministic finite automaton over the alphabet A by A =
(Q, 6,1, T) where @ is the set of states, i €) is the initial state, 7' C @ is the
set of terminal states and ¢ is the transition function. We use f.A to denote
the number of states of A. We abbreviate by NFA a nondeterministic finite
automaton and by DFA a deterministic finite automaton.

3 Using deterministic automata

Before presenting our algorithm, we examine what would be the classical ap-
proach to check if a word w is in X*. A natural idea is to build an automaton
for X*. We consider the following process: (i) build a finite automaton for X,
(ii) modify this automaton to accept X* (doing so, we usually get an NFA),
and (iii) finally get a DFA after a classical determinization procedure. An
optional fourth step could be to minimize the resulting automaton.

Automata for a finite set of words X. First we consider three simple
ways of building an automaton for a finite set of words X.

(1) The “solar” automaton Sx which is obtained as follows: we build one
automaton per word x € X with |z| + 1 states and merge all the initial
states (see Fig. 1). Note that this NFA is a tree with root 7 and that
1Sx = | X| + 1.

Fig. 1. The solar NFA Sx (left), the tree DFA T7x (middle) and the minimal DFA
My for X = {aa, ab,bb, aba, abb}.

(2) The tree automaton Tx (see Fig. 1): this is a tree which collects words
sharing a common prefix. In terms of automata, the set of states corre-
sponds to the set of prefixes and we have

Tx = (Q = Pref(X),6,i=¢,T = X)

with §(p,a) = pa if p,pa € Pref(X) and a € A. This DFA has §7x =
Card(Pref (X)) states.

Fig. 2. The flower automaton merge(Sx) (left) and the NFA star(7Tx) (right) for
X = {aa, ab,bb, aba, abb}.

(3) The minimal automaton Mx (see Fig. 1). Given the set X a more elabo-
rate method is to build the minimal DFA M x recognizing X . For instance
one can apply a minimization algorithm to the tree automata 7x in linear
time with respect to | X| [12]. Of course Mx is not necessary a tree.

Automata for the language X*. A straightforward way to build an NFA
recognizing the language X* from an automaton A = (Q, 0, i,T) recognizing
X is to add e-transitions from each final state of T" to the initial state 2. We
denote this automaton by star(A) (see Fig. 2). To save a little more space, we
also merge all the terminal states without outgoing transitions with the initial
state: this yields an automaton merge(.A). Doing so with the solar automaton
Sx, we obtain merge(Sx) the classical flower automaton of X* (see Fig. 2).

Applying the classical powerset construction to one of the previous automata
accepting X*, we obtain a DFA for X™*.

Note that the determinization procedure gives the same result either starting
from star(Sx) or from star(7x), due to their tree-like structures. The same is
true with merge instead of star.

In general, for an NFA A, the determinization procedure builds a DFA whose
number of states is trivially bounded by 2#4. However, when we consider the
particular case of X* with X finite, could an exponential blow-up really hap-
pen? The following example shows that the answer is positive.

Example 1 Let us consider X = Afa 4+ b with k > 0. It is easy to give an
NFA for X* with k+1 states (see Fig. 3). The determinization leads to a DFA
with ©(2%) states.

Fig. 3. An NFA for X* with the set X = A*a +b (k = 5) of Example 1.

Another question is to find if we can relate the number of states of a DFA for
X* to | X|. Until recently, it was thought that it could not exceed O(|X[*),
a bound which was shown to be reachable in [13], as stated in the following
example.

Example 2 For an integer h > 1, take X = {a" ', a"}. The tree DFA Ty
and the minimal DFA Mx are the same and have h+1 = O(|X|) states. The
minimal DFA for X* has O(|X[?) states (see [13]).

J. Shallit showed in [14] with the following example that an exponential blow-
up is also possible.

Example 3 Let h > 3 and let
X = {b} U {a'ba""""!1 <i < h—2} U {ba"?b}.

The minimal DFA accepting X* has ezactly 3(h — 1)2"=3 + 22 states [14].
Note that the size is exponential of order ©(h2") whereas Card(X) = O(h)
and | X| = ©(h?).

The problem of finding a tight upper bound for the number of states of the
minimal DFA for X* in terms of the total length |X]| is called by this author
[14] the non-commutative Frobenius problem.

The number of states of the minimal automata obtained for the family of
sets used in Example 3 is ©(h2") where h = O(|X|"/?). A priori, the upper
bound for a DFA obtained by determinization of a NFA for X* with 6(|X|)
states is ©(2/*1). Experiments performed on the family of Example 3 show that
the DFA obtained by determinization (before minimization) has also ©(h2")
states, and not ©(2""). We do not know in general whether

(i) it is possible that the minimal DFA for X* has ©(2/X]) states;

(i) it is possible that the DFA obtained by determinization has ©(2X) states.

Simulating the determinization process. A way to avoid the deter-
minization step would be to simulate the determinized automaton while pars-
ing the word w. Given a NFA A accepting the language X* with X a finite
set of words, this gives an algorithm of time complexity O(4.A x |w|) and the
space required to simulate the determinization process is §.4. Since the num-
ber of states of the NFA can be of order O(]X), this approach gives a time
complexity O(|X| x |w|) in the worst case. As an example of such a situation,
we have the set X = {a*b,a} with & > 0.

4 Using string matching machines

The methods discussed in the previous section do not lead to an optimal
algorithm in O(|w|). Indeed, either we use a DFA and we face a computation
which can be exponential in |X| or we simulate the DFA and we obtain an
algorithm in O(|X| x |w|). We now consider a different approach which leads
to a lower complexity.

Another advantage of the proposed approach is to possibly solve a more general
problem. Indeed, we may be interested in obtaining the set of all decomposi-
tions of the input word over X . This cannot be achieved using a DFA accepting
X* given for instance by the methods described in the previous section.

Let X = {xg,..., 2, 1} be a set of n words of A*. We present in this section
an algorithm, using classic pattern matching techniques, which gives all the
X -decompositions of w (the decompositions of w as concatenations of words
of X). Then we derive a membership test for X* in O(Card(X) x |w|) time
complexity. In the next section, we shall study a further improvement of this
algorithm.

4.1 Decompositions

The following remark is the basis of our algorithm. An X-decomposition of w
is always the extension of an X-decomposition of a prefix of w.

We consider the prefix w[0..i] of length i + 1 of w. The word w[0..i] admits
an X-decomposition ending with a word z, if and only if w[0..5] = fz, for a
word f in X*. In other terms, w[0..7] admits an X-decomposition ending with
x, if and only if z, is a suffix of w[0..7] and w|[0..i — |z,|] € X*. We obtain all

the X-decompositions of w[0..i] by examining all the words of X which are
suffixes of w|0..i] and which extend a previous X-decomposition. Of course,
when w[0..7] = w, we get all the X-decompositions of w.

So the idea of the algorithm is the following: build, for each word z, € X, a
deterministic automaton A; accepting the language A*z, and use an auxiliary
array D of size |w| such that

Dl = {fe0.n—1]| w]0.i] € X*z}.

Then testing if w[0..i] ends by the word x, is equivalent to checking that
the automaton A4, is in a terminal state after reading w[0..i]. Also testing if
w([0..7 — |x,|] € X* is equivalent to checking that D[i — |z,|] # 0.

In the following algorithm, the input word w is read simultaneously by all the n
automata, letter by letter, from left to right. We use, for technical convenience,
an additional element D[—1] initialized to an arbitrary non-empty set (for
instance {oc}) meaning that the prefix € of w is always in X*. At the end of
the scanning of w, provided D[|w| — 1] # (}, we can process the array D from
the end to the beginning and recover all the X-decompositions for instance
with a recursive procedure like PRINTALLDECOMPOSITIONS() (see below).

For each word z, € X, the automaton A; considered here is the minimal
automaton which recognizes the language A*z,. This automaton is defined by
Ay = (Q¢ = Pref(xy),0¢,i¢ = ,t; = x;) where the transition function 4, is
defined, for p € Pref(X) and a € A, by

d¢(p, a) = the longest suffix of pa which belongs to Pref ().

We use these principles in the following algorithm.

ISDECOMPOSEDALL(w, X = {zg,...,Zpn-1})
1 > Preprocessing step

2 for/+ 0ton—1do
3 Ay + AUTOMATONFROMWORD(x¢)
4 > Main loop
5 for/+ 0ton—1do
6 > py is the current state of the automaton A,.
7 JIRRY,
8 D[—1] + {oo}
9 fori«+ 0to|w —1do
10 D[]+ 0
11 for /< 0ton—1do
12 pe 6¢(pe, wli])
13 if py =ty and D[i — |z¢|] # 0 then
14 Dli] < D[i) U {¢}
15 return D

The algorithm returns an array of size O(Card(X) x |w]|). The preprocessing
step which builds automata requires a time O(|X|) and a space O(|X| x
Card(A)) (or O(|X|) if automata are represented with the help of a failure
function as usually made in stringology [15,16]).

Note that we do not need to build all the automata A, in the preprocessing
step. We can also choose to construct in a lazy way the accessible part of the
automata (corresponding for each automaton A, to the prefixes of x; occurring
in w) along the processing of the input word w. For the sake of clarity, we
have chosen to distinguish the preprocessing step from the rest. In view of this
remark, we could omit the complexity O(|X|) of the preprocessing step in the
following proposition.

Proposition 4 The time and space complexity of the algorithm ISDECOM-
POSEDALL() is O(Card(X) x |w| + | X]).

Given the array D computed by the procedure ISDECOMPOSEDALL() for a
word w, it is quite straightforward to print all the decompositions of w thanks
to the following two procedures:

PRINTALLDECOMPOSITIONS(w, X = {zg,...,Zn—1})
1 D «+ ISDECOMPOSEDALL(w, X)
2 L < emptyList
3 RECPRINTALLDECOMPOSITIONS(D, |w| — 1, L)

RECPRINTALLDECOMPOSITIONS(D, h, L)
1 if h= -1 then
PRINT(L)
else for j € D[h] do
RECPRINTALLDECOMPOSITIONS(D, h — |zj|,z; - L)

=W N

For a word w belonging to X* the procedure PRINTALLD ECOMPOSITIONS()

prints every X-decomposition of w in the form x;, - z;, -~ x;,.

If we want only one X-decomposition of w, it suffices to store in D[i| only one
word z of X corresponding to an X-decomposition of w|0..i] ending with this
x. The space required for the array then becomes O(|w).

4.2 Membership test

When we are only interested in testing the membership of w in X*, we can
simply use a Boolean array D setting DJ[i] = true if and only if there exists

x € X such that w[0..i] € X*z. Moreover, it suffices to use a circular Boolean
array D][0..k] with & = max,cx |z| (instead of |w|+ 1), and compute indexes
in this array modulo £ +1 (which means that for m € Z, one has D[m| = D|r]
with 0 < r < k+1and m = r mod (k+1)). This yields the following algorithm.

MEMBERSHIP(w, X = {zg,...,Zn-1})
1 > Preprocessing step

2 for/+0ton—1do
3 Ay + AUTOMATONFROMWORD(xy)
4 > Main loop
5 for/<0ton—1do
6 > py is the current state of the automaton A,.
7 JIRRY,
8 DJ[-1] + true
9 fori«+ 0to|w —1do
10 DJi] + false
11 for /< 0ton—1do
12 pe 6¢(pe, wli])
13 £+ 0
14 do if (p, =t; and D[i — |z|] = true) then
15 DJi] + true
16 L—1+1
17 while (¢ < n and DJ[i] = false)

18 return D[jw| — 1]

We can easily modify the algorithm while preserving the same complexity by
exiting whenever all the elements of the array D from 0 to k£ are equal to false.
In this case, w ¢ X*.

The following proposition gives the complexity of the above algorithm.

Proposition 5 The time complexity of the algorithm MEMBERSHIP() is O(Card(X)x
jw| +[XT).

The analysis of the space complexity shows that, except for the preprocessing
step, the algorithm needs only O(max,cx |z|) additional space. In particular,
the space complexity is independent of the length of the input word.

5 String matching automaton

In the preceding section, we used for each word x, € X a distinct automaton
A, corresponding to A*xy. To get a more efficient algorithm, we resort in this
section to the well-known Aho-Corasick algorithm [17] which builds from a

finite set of words X a deterministic complete automaton (not necessarily
minimal) Ax recognizing the language A*X. This automaton is the basis of
many efficient algorithms on string matching problems and is often called
the string matching automaton. Tt is a generalization of the automaton A,
associated to a single word. Let us briefly recall its construction. We let Ay =
(Pref(X),d,e, Pref(X) N A*X) be the automaton where the set of states is
Pref (X)), the initial state is €, the set of final states is Pref(X) N A*X and
the transition function § is defined by

d(p, a) = the longest suffix of pa which belongs to Pref (X).

We associate to each word u € A* u # ¢, the word Borderx(u), or simply
Border(u) when there is no ambiguity, defined by

Border(u) = the longest proper suffix of v which belongs to Pref(X).

The automaton Ax can be easily built from the tree Ty (cf. the section 3) of
X by a breadth-first exploration and using the Border function. Indeed, one
has

pa if pa € Pref (X)
6(p,a) = { 6(Border(p), a) if p # ¢ and pa & Pref (X)
€ otherwise

A state p is terminal for Ay if p is a word of X (i.e. p is terminal in the tree
Tx of X) or if a proper suffix of p is a word of X. The automaton Ax can be
built in time and space complexity O(|X|) if we use the function Border as a
failure function (see [15,16] for implementation details).

We will say, for simplicity, that a state of the automaton is marked if it corre-
sponds to a word of X and not marked otherwise. A major difference induced
by the Aho-Corasick automaton is that a terminal state p, marked or not, cor-
responds to an ordered set Suff (p) N X of suffixes of p. The order considered is
given by the suffix relation »4,¢ where u >4,¢ v means that v is a proper suffix
of u. We denote by SuffitChain(p) the sequence of words in Suff (p) N X or-
dered by this relation. To find easily the words of SuffizrChain(p), we associate
to each terminal state p of Ax the state

SuffizLink(p) = the longest proper suffix of p which belongs to X.

Thus we have

Border(p) if Border(p) € X
SuffizLink(p) = { SuffirLink(Border(p)) if Border(p) ¢ X and Border(p) # ¢

undefined otherwise

10

Since SuffizLink(p) is computed in time O(|p|), the preprocessing can be done
in time and space complexity O(|X|), i.e. the complexity of Aho-Corasick
algorithm.

To decide whether an input word w belongs to X* or not (and get eventually
its X-decompositions), we use the same technique as in the previous section,
considering this time the automaton Ax (instead of the n automata Ay).
The immediate advantage is that each letter of the word w is read only once
(meaning that only one transition is made in the automaton) whereas each
letter was read n times before (one per automaton Ay).

Let us suppose that for the current prefix w[0..7] of w, the automaton Ay ends
in a terminal state p. This means that w[0..i] = fp with f € A* and p the
longest suffix of w[0..7] in Pref(X) N A*X. Consequently, w[0..i] € X* if and
only if w[0..i — |z|] € X* for at least one word x of SuffitChain(p). This is
easily checked using the marking of terminal states (whether they correspond
exactly to a word of X or not), the function SuffizLink(p) and the array D
(which plays exactly the same role as in the previous section).

This yields our main result, stated in the following proposition.

Proposition 6 Let X be a finite set of words on A. The membership test of
a word w in X* can be done in time O(r X |w|+ |X|) where r is the mazimal
length of the suffiz chains in X .

The space complexity includes O(|X|) for the preprocessing step (building the
Aho-Corasick automaton) and O(max,cx |z|) for the rest of the algorithm.

If X is a suffix code, the complexity, except for the preprocessing step, becomes
O(Jw|) which is optimal, whereas the worst case happens when all words are
suffixes of one another giving the same complexity O(Card(X) X |w|) as in
the previous section. Note also that in the particular case where X is a prefix
code, it is easy to solve the membership problem for X* in an optimal time
O(Jw|) after a O(]X|) preprocessing step.

Example 7 Let X = {a? a'b, a®ba, a®b,ab}. For the word w = a®b, it is ne-
cessary to follow the suffiz chain SuffitChain(a'b) = (a’b, a®b, ab) since after
parsing w the automaton is in the state corresponding to a*b and the unique
X -decomposition is a®b = a® - a® - ab. Figure 4 shows the tree Tx (left), the
automaton Ax with the links representing the failure function Border (middle)
and the SuffixLink representing the suffiz chains (right) to add to the Aho-
Corasick automaton.

Acknowledgements We thank the referee for pointing us the reference to
J. Shallit’s [14] used in Example 3. The style for algorithms is algochl.sty from

11

Fig. 4. For the set X = {a? a’b,a’ba,a’b,ab} of example 7: Tree Tx (left),
Aho-Corasick automaton with links Border (middle) and the new links SuffizLink
(right) to add to the Aho-Corasick automaton.

[16] and automata are drawn thanks to gastex.

References

1]

2]

M.-P. Schiitzenberger, A property of finitely generated submonoids of free
monoids, in: G. Pollak (Ed.), Algebraic Theory of Semigroups (Proc. Sixth
Algebraic Conf., Szeged,1976), North-Holland, Amsterdam, 1979, pp. 545-576.

A. Sardinas, G. Patterson, A necessary and sufficient condition for the unique
decomposition of coded messages, in: IRE Convention Record, Part 8, 1953, pp.
104-108.

A. Apostolico, R. Giancarlo, Pattern matching implementation of a fast test for
unique decipherability, Information Processing Letters 18 (1984) 155-158.

M. Rodeh, A fast test for unique decipherability based on suffix trees, IEEE
Trans. Inform. Theory 28 (1982) 648-651.

C. M. Hoffmann, A note on unique decipherability, in: MFCS, Vol. 176 of
Lecture Notes in Computer Science, Springer-Verlag New York, Inc., 1984, pp.
50-63.

R. McCloskey, An o(n?) time algorithm for deciding whether a regular language
is a code, Journal of Computing and Information 2 (1) (1996) 79-89, special
Issue: Proceedings of the 8th international Conference on Computing and

Information (ICCI’96).

Z. Galil, Open problems in stringology, in: A. Apostolico, Z. Galil (Eds.),
Combinatorial Algorithms on Words, Springer-Verlag, Berlin, 1985, pp. 1-8.

12

[8] D. Perrin, Finite automata, in: J. Leeuwen (Ed.), Handbook of Theoretical
Computer Science, Formal Models and Semantics, Vol. B, Elsevier, 1990, pp.
1-57.

[9] J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory,
Languages and Computation, Addison-Wesley, 2001.

[10] J. Sakarovitch, Eléments de théorie des automates, Vuibert, 2003.

[11] S. Yu, Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of
Formal Languages, Springer-Verlag New York, Inc., 1997, pp. 41-110.

[12] D. Revuz, Minimisation of acyclic deterministic automata in linear time, Theor.
Comput. Sci. 92 (1) (1992) 181-189.

[13] S. Yu, State complexity of regular languages, in: Proceedings of Descriptional
Complexity of Automata, Grammars and Related Structures, 1999, pp. 77-88.

[14] J. Shallit, Regular expressions, enumeration and state complexity, invited
talk at Ninth International Conference on Implementation and Application of
Automata (CTAA 2004) Queen’s University, Kingston, Ontario, Canada, July
22-24, 2004.

[15] M. Crochemore, W. Rytter, Jewels of Stringology, World Scientific Publishing,
Hong-Kong, 2002, 310 pages.

[16] M. Crochemore, C. Hancart, T. Lecroq, Algorithmique du texte, Vuibert, 2001,
347 pages.

[17] A. V. Aho, M. J. Corasick, Efficient string matching: an aid to bibliographic
search, Commun. ACM 18 (6) (1975) 333-340.

13

