
Parsing with a �nite ditionaryJulien Cl�ement a , Jean-Pierre Duval b , Giovanna Guaiana b ,Dominique Perrin a and Giuseppina Rindone aaInstitut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, FranebLIFAR, Universit�e de Rouen, FraneAbstratWe address the following issue: given a word w 2 A� and a set of n nonempty wordsX, how to determine eÆiently whether w 2 X� or not? We disuss several methodsinluding an O(r� jwj+ jXj) algorithm for this problem where r � n is the lengthof a longest suÆx hain of X and jXj is the sum of the lengths of words in X. Wealso onsider the more general problem of providing all the deompositions of w inwords of X.Key words: Finite automata, string mathing
1 IntrodutionThe omplexity of algorithms related to �nite automata and regular expres-sions is well-known in general. In this artile, we fous on a partiular problem,namely the omplexity of parsing a regular language of the form Y = X� whereX is a �nite set of nonempty words. This type of language ours often in theappliations, when X is a ditionary and Y is the set of texts obtained byarbitrary onatenations of strings from this ditionary. The time and spaeomplexity an be an important issue in suh appliations sine the ditionar-ies used for natural languages an ontain up to several million words.As a onsequene of general onstrutions from automata theory, any regularlanguage an be parsed in time proportional to the produt of the size of theEmail addresses: Julien.Clement�univ-mlv.fr (Julien Cl�ement),Jean-Pierre.Duval�univ-rouen.fr (Jean-Pierre Duval),Giovanna.Guaiana�univ-rouen.fr (Giovanna Guaiana),Dominique.Perrin�univ-mlv.fr (Dominique Perrin),Giuseppina.Rindone�univ-mlv.fr (Giuseppina Rindone).Preprint submitted to Elsevier Siene 10 January 2005

regular expression by the length of the input word. This just amounts to simu-lating a nondeterministi automaton built in a standard way from the regularexpression. Using a deterministi automaton produes a linear-time algorithmafter ompleting a determinization algorithm whih may itself be exponential.Our main result here is an algorithm allowing to parse a regular languageof the form X�, with X �nite, in time O(r � jwj + jXj) with r the lengthof a longest suÆx hain in X, w the input word and jXj the sum of thelengths of words in X (Setions 4 and 5). The quantity r depending only onthe set X is upper-bounded by Card(X). This algorithm allows to get all thedeompositions of the input word in words of X. We also disuss some furtherproblems on the automata related to regular expressions of this type (Setion3).The motivation of our study is in the work of Sh�utzenberger on this typeof languages. He has shown that although the size of the automaton dependson the length of the words in X, several syntati parameters depend onlyon the ardinality of X (see [1℄). One of them is linked with the numberof interpretations of a word in words of X, and is related with the problemonsidered here.A similar yet unsolved problem is the omplexity of the problem of unambi-guity of the expression X�, i.e. of the problem of testing whether X is a ode.The standard algorithm [2℄ gives a quadrati omplexity O(jXj2) where jXj isthe total length of the words of X. It was lowered later to O(Card(X)� jXj)by various authors [3{6℄. However it is not known whether there exists a linearalgorithm (see [7℄).2 Preliminaries and notationsFor a more omplete desription of automata and fundamentals of formallanguages, the reader is referred to [8{10℄ and to [11℄ in partiular for a reentoverview on reognizable languages in free monoids.Let A be a �nite alphabet. We denote by " the empty word and by A� (resp.A+) the set of �nite words (resp. nonempty �nite words) on A. For a wordw 2 A�, we denote by jwj the length of w, by w[j℄ for 0 � j < jwj the letterof index j in w, and by w[j::k℄ = w[j℄w[j + 1℄ � � �w[k℄. For any deompositionw = uv with u; v 2 A� we say that u and v are respetively a pre�x and asuÆx of w. The suÆx v is said to be proper if v 6= w.For a �nite set X of words on A, we denote by Pref (X) and Su� (X) theset of pre�xes and suÆxes of the words of X respetively, by Card(X) the2

ardinality of X and by jXj the sum of the lengths of words of X, that isjXj = Xx2X jxj:We denote a nondeterministi �nite automaton over the alphabet A by A =(Q; Æ; i; T) where Q is the set of states, i 2 Q is the initial state, T � Q is theset of terminal states and Æ is the transition funtion. We use ℄A to denotethe number of states of A. We abbreviate by NFA a nondeterministi �niteautomaton and by DFA a deterministi �nite automaton.3 Using deterministi automataBefore presenting our algorithm, we examine what would be the lassial ap-proah to hek if a word w is in X�. A natural idea is to build an automatonfor X�. We onsider the following proess: (i) build a �nite automaton for X,(ii) modify this automaton to aept X� (doing so, we usually get an NFA),and (iii) �nally get a DFA after a lassial determinization proedure. Anoptional fourth step ould be to minimize the resulting automaton.Automata for a �nite set of words X. First we onsider three simpleways of building an automaton for a �nite set of words X.(1) The \solar" automaton SX whih is obtained as follows: we build oneautomaton per word x 2 X with jxj + 1 states and merge all the initialstates (see Fig. 1). Note that this NFA is a tree with root i and that℄SX = jXj+ 1.
aa b ba b aabb ab baa ba b b ba bbaa b

Fig. 1. The solar NFA SX (left), the tree DFA TX (middle) and the minimal DFAMX for X = faa; ab; bb; aba; abbg. 3

(2) The tree automaton TX (see Fig. 1): this is a tree whih ollets wordssharing a ommon pre�x. In terms of automata, the set of states orre-sponds to the set of pre�xes and we haveTX = (Q = Pref (X); Æ; i = "; T = X)with Æ(p; a) = pa if p; pa 2 Pref (X) and a 2 A. This DFA has ℄TX =Card(Pref (X)) states. a bab ba a b a bab
baa ba b b" "" " "

Fig. 2. The ower automaton merge(SX) (left) and the NFA star (TX) (right) forX = faa; ab; bb; aba; abbg.(3) The minimal automatonMX (see Fig. 1). Given the set X a more elabo-rate method is to build the minimal DFAMX reognizingX. For instaneone an apply a minimization algorithm to the tree automata TX in lineartime with respet to jXj [12℄. Of ourse MX is not neessary a tree.Automata for the language X�. A straightforward way to build an NFAreognizing the language X� from an automaton A = (Q; Æ; i; T) reognizingX is to add "-transitions from eah �nal state of T to the initial state i. Wedenote this automaton by star(A) (see Fig. 2). To save a little more spae, wealso merge all the terminal states without outgoing transitions with the initialstate: this yields an automaton merge(A). Doing so with the solar automatonSX , we obtain merge(SX) the lassial ower automaton of X� (see Fig. 2).Applying the lassial powerset onstrution to one of the previous automataaepting X�, we obtain a DFA for X�.Note that the determinization proedure gives the same result either startingfrom star(SX) or from star(TX), due to their tree-like strutures. The same istrue with merge instead of star .In general, for an NFA A, the determinization proedure builds a DFA whosenumber of states is trivially bounded by 2℄A. However, when we onsider thepartiular ase of X� with X �nite, ould an exponential blow-up really hap-pen? The following example shows that the answer is positive.4

Example 1 Let us onsider X = Aka + b with k > 0. It is easy to give anNFA for X� with k+1 states (see Fig. 3). The determinization leads to a DFAwith �(2k) states. a a aaaa b b bbbb
Fig. 3. An NFA for X� with the set X = Aka+ b (k = 5) of Example 1.Another question is to �nd if we an relate the number of states of a DFA forX� to jXj. Until reently, it was thought that it ould not exeed �(jXj2),a bound whih was shown to be reahable in [13℄, as stated in the followingexample.Example 2 For an integer h > 1, take X = fah�1; ahg. The tree DFA TXand the minimal DFA MX are the same and have h+1 = �(jXj) states. Theminimal DFA for X� has �(jXj2) states (see [13℄).J. Shallit showed in [14℄ with the following example that an exponential blow-up is also possible.Example 3 Let h � 3 and letX = fbg [faibah�i�1j1 � i � h� 2g [fbah�2bg:The minimal DFA aepting X� has exatly 3(h � 1)2h�3 + 2h�2 states [14℄.Note that the size is exponential of order �(h2h) whereas Card(X) = �(h)and jXj = �(h2).The problem of �nding a tight upper bound for the number of states of theminimal DFA for X� in terms of the total length jXj is alled by this author[14℄ the non-ommutative Frobenius problem.The number of states of the minimal automata obtained for the family ofsets used in Example 3 is �(h2h) where h = �(jXj1=2). A priori, the upperbound for a DFA obtained by determinization of a NFA for X� with �(jXj)states is �(2jXj). Experiments performed on the family of Example 3 show thatthe DFA obtained by determinization (before minimization) has also �(h2h)states, and not �(2h2). We do not know in general whether(i) it is possible that the minimal DFA for X� has �(2jXj) states;5

(ii) it is possible that the DFA obtained by determinization has �(2jXj) states.Simulating the determinization proess. A way to avoid the deter-minization step would be to simulate the determinized automaton while pars-ing the word w. Given a NFA A aepting the language X� with X a �niteset of words, this gives an algorithm of time omplexity O(℄A� jwj) and thespae required to simulate the determinization proess is ℄A. Sine the num-ber of states of the NFA an be of order O(jXj), this approah gives a timeomplexity O(jXj� jwj) in the worst ase. As an example of suh a situation,we have the set X = fakb; ag with k > 0.4 Using string mathing mahinesThe methods disussed in the previous setion do not lead to an optimalalgorithm in O(jwj). Indeed, either we use a DFA and we fae a omputationwhih an be exponential in jXj or we simulate the DFA and we obtain analgorithm in O(jXj � jwj). We now onsider a di�erent approah whih leadsto a lower omplexity.Another advantage of the proposed approah is to possibly solve a more generalproblem. Indeed, we may be interested in obtaining the set of all deomposi-tions of the input word overX. This annot be ahieved using a DFA aeptingX� given for instane by the methods desribed in the previous setion.Let X = fx0; : : : ; xn�1g be a set of n words of A+. We present in this setionan algorithm, using lassi pattern mathing tehniques, whih gives all theX-deompositions of w (the deompositions of w as onatenations of wordsof X). Then we derive a membership test for X� in O(Card(X) � jwj) timeomplexity. In the next setion, we shall study a further improvement of thisalgorithm.4.1 DeompositionsThe following remark is the basis of our algorithm. An X-deomposition of wis always the extension of an X-deomposition of a pre�x of w.We onsider the pre�x w[0::i℄ of length i + 1 of w. The word w[0::i℄ admitsan X-deomposition ending with a word x` if and only if w[0::i℄ = fx` for aword f in X�. In other terms, w[0::i℄ admits an X-deomposition ending withx` if and only if x` is a suÆx of w[0::i℄ and w[0::i� jx`j℄ 2 X�. We obtain all6

the X-deompositions of w[0::i℄ by examining all the words of X whih aresuÆxes of w[0::i℄ and whih extend a previous X-deomposition. Of ourse,when w[0::i℄ = w, we get all the X-deompositions of w.So the idea of the algorithm is the following: build, for eah word x` 2 X, adeterministi automaton A` aepting the language A�x` and use an auxiliaryarray D of size jwj suh thatD[i℄ = f` 2 [0::n� 1℄ j w[0::i℄ 2 X�x`g:Then testing if w[0::i℄ ends by the word x` is equivalent to heking thatthe automaton A` is in a terminal state after reading w[0::i℄. Also testing ifw[0::i� jx`j℄ 2 X� is equivalent to heking that D[i� jx`j℄ 6= ;.In the following algorithm, the input word w is read simultaneously by all the nautomata, letter by letter, from left to right. We use, for tehnial onveniene,an additional element D[�1℄ initialized to an arbitrary non-empty set (forinstane f1g) meaning that the pre�x " of w is always in X�. At the end ofthe sanning of w, provided D[jwj � 1℄ 6= ;, we an proess the array D fromthe end to the beginning and reover all the X-deompositions for instanewith a reursive proedure like PrintAllDeompositions() (see below).For eah word x` 2 X, the automaton A` onsidered here is the minimalautomaton whih reognizes the language A�x`. This automaton is de�ned byA` = (Q` = Pref (x`); Æ`; i` = "; t` = x`) where the transition funtion Æ` isde�ned, for p 2 Pref (X) and a 2 A, byÆ`(p; a) = the longest suÆx of pa whih belongs to Pref (x`):We use these priniples in the following algorithm.IsDeomposedAll(w;X = fx0; : : : ; xn�1g)1 . Preproessing step2 for ` 0 to n� 1 do3 A` AutomatonFromWord(x`)4 . Main loop5 for ` 0 to n� 1 do6 . p` is the urrent state of the automaton A`.7 p` i`8 D[�1℄ f1g9 for i 0 to jwj � 1 do10 D[i℄ ;11 for ` 0 to n� 1 do12 p` Æ`(p`; w[i℄)13 if p` = t` and D[i� jx`j℄ 6= ; then14 D[i℄ D[i℄ [f`g15 return D 7

The algorithm returns an array of size O(Card(X)� jwj). The preproessingstep whih builds automata requires a time O(jXj) and a spae O(jXj �Card(A)) (or O(jXj) if automata are represented with the help of a failurefuntion as usually made in stringology [15,16℄).Note that we do not need to build all the automata A` in the preproessingstep. We an also hoose to onstrut in a lazy way the aessible part of theautomata (orresponding for eah automatonA` to the pre�xes of x` ourringin w) along the proessing of the input word w. For the sake of larity, wehave hosen to distinguish the preproessing step from the rest. In view of thisremark, we ould omit the omplexity O(jXj) of the preproessing step in thefollowing proposition.Proposition 4 The time and spae omplexity of the algorithm IsDeom-posedAll() is O(Card(X)� jwj+ jXj).Given the array D omputed by the proedure IsDeomposedAll() for aword w, it is quite straightforward to print all the deompositions of w thanksto the following two proedures:PrintAllDeompositions(w;X = fx0; : : : ; xn�1g)1 D IsDeomposedAll(w;X)2 L emptyList3 RePrintAllDeompositions(D; jwj � 1; L)RePrintAllDeompositions(D;h;L)1 if h = �1 then2 Print(L)3 else for j 2 D[h℄ do4 RePrintAllDeompositions(D;h � jxjj; xj � L)For a word w belonging to X� the proedure PrintAllDeompositions()prints every X-deomposition of w in the form xi0 � xi1 � � �xip .If we want only one X-deomposition of w, it suÆes to store in D[i℄ only oneword x of X orresponding to an X-deomposition of w[0::i℄ ending with thisx. The spae required for the array then beomes O(jwj).4.2 Membership testWhen we are only interested in testing the membership of w in X�, we ansimply use a Boolean array D setting D[i℄ = true if and only if there exists8

x 2 X suh that w[0::i℄ 2 X�x. Moreover, it suÆes to use a irular Booleanarray D[0::k℄ with k = maxx2X jxj (instead of jwj+ 1), and ompute indexesin this array modulo k+1 (whih means that for m 2 Z, one has D[m℄ = D[r℄with 0 � r < k+1 andm = r mod (k+1)). This yields the following algorithm.Membership(w;X = fx0; : : : ; xn�1g)1 . Preproessing step2 for ` 0 to n� 1 do3 A` AutomatonFromWord(x`)4 . Main loop5 for ` 0 to n� 1 do6 . p` is the urrent state of the automaton A`.7 p` i`8 D[�1℄ true9 for i 0 to jwj � 1 do10 D[i℄ false11 for ` 0 to n� 1 do12 p` Æ`(p`; w[i℄)13 ` 014 do if (p` = t` and D[i� jx`j℄ = true) then15 D[i℄ true16 ` `+ 117 while (` < n and D[i℄ = false)18 return D[jwj � 1℄We an easily modify the algorithm while preserving the same omplexity byexiting whenever all the elements of the array D from 0 to k are equal to false.In this ase, w 62 X�.The following proposition gives the omplexity of the above algorithm.Proposition 5 The time omplexity of the algorithmMembership() is O(Card(X)�jwj+ jXj).The analysis of the spae omplexity shows that, exept for the preproessingstep, the algorithm needs only O(maxx2X jxj) additional spae. In partiular,the spae omplexity is independent of the length of the input word.5 String mathing automatonIn the preeding setion, we used for eah word x` 2 X a distint automatonA` orresponding to A�x`. To get a more eÆient algorithm, we resort in thissetion to the well-known Aho-Corasik algorithm [17℄ whih builds from a9

�nite set of words X a deterministi omplete automaton (not neessarilyminimal) AX reognizing the language A�X. This automaton is the basis ofmany eÆient algorithms on string mathing problems and is often alledthe string mathing automaton. It is a generalization of the automaton A`assoiated to a single word. Let us briey reall its onstrution. We let AX =(Pref (X); Æ; ";Pref (X) \ A�X) be the automaton where the set of states isPref (X), the initial state is ", the set of �nal states is Pref (X) \ A�X andthe transition funtion Æ is de�ned byÆ(p; a) = the longest suÆx of pa whih belongs to Pref (X):We assoiate to eah word u 2 A�, u 6= ", the word BorderX(u), or simplyBorder(u) when there is no ambiguity, de�ned byBorder(u) = the longest proper suÆx of u whih belongs to Pref (X):The automaton AX an be easily built from the tree TX (f. the setion 3) ofX by a breadth-�rst exploration and using the Border funtion. Indeed, onehas Æ(p; a) = 8>>>>><>>>>>: pa if pa 2 Pref (X)Æ(Border(p); a) if p 6= " and pa 62 Pref (X)" otherwiseA state p is terminal for AX if p is a word of X (i.e. p is terminal in the treeTX of X) or if a proper suÆx of p is a word of X. The automaton AX an bebuilt in time and spae omplexity O(jXj) if we use the funtion Border as afailure funtion (see [15,16℄ for implementation details).We will say, for simpliity, that a state of the automaton is marked if it orre-sponds to a word of X and not marked otherwise. A major di�erene induedby the Aho-Corasik automaton is that a terminal state p, marked or not, or-responds to an ordered set Su� (p)\X of suÆxes of p. The order onsidered isgiven by the suÆx relation �su� where u �su� v means that v is a proper suÆxof u. We denote by SuÆxChain(p) the sequene of words in Su� (p) \ X or-dered by this relation. To �nd easily the words of SuÆxChain(p), we assoiateto eah terminal state p of AX the stateSuÆxLink(p) = the longest proper suÆx of p whih belongs to X.Thus we haveSuÆxLink(p) = 8>>>>><>>>>>:Border(p) if Border(p) 2 XSuÆxLink(Border(p)) if Border(p) 62 X and Border(p) 6= "unde�ned otherwise10

Sine SuÆxLink(p) is omputed in time O(jpj), the preproessing an be donein time and spae omplexity O(jXj), i.e. the omplexity of Aho-Corasikalgorithm.To deide whether an input word w belongs to X� or not (and get eventuallyits X-deompositions), we use the same tehnique as in the previous setion,onsidering this time the automaton AX (instead of the n automata A`).The immediate advantage is that eah letter of the word w is read only one(meaning that only one transition is made in the automaton) whereas eahletter was read n times before (one per automaton A`).Let us suppose that for the urrent pre�x w[0::i℄ of w, the automatonAX endsin a terminal state p. This means that w[0::i℄ = fp with f 2 A� and p thelongest suÆx of w[0::i℄ in Pref (X) \ A�X. Consequently, w[0::i℄ 2 X� if andonly if w[0::i � jxj℄ 2 X� for at least one word x of SuÆxChain(p). This iseasily heked using the marking of terminal states (whether they orrespondexatly to a word of X or not), the funtion SuÆxLink(p) and the array D(whih plays exatly the same role as in the previous setion).This yields our main result, stated in the following proposition.Proposition 6 Let X be a �nite set of words on A. The membership test ofa word w in X� an be done in time O(r� jwj+ jXj) where r is the maximallength of the suÆx hains in X.The spae omplexity inludes O(jXj) for the preproessing step (building theAho-Corasik automaton) and O(maxx2X jxj) for the rest of the algorithm.IfX is a suÆx ode, the omplexity, exept for the preproessing step, beomesO(jwj) whih is optimal, whereas the worst ase happens when all words aresuÆxes of one another giving the same omplexity O(Card(X) � jwj) as inthe previous setion. Note also that in the partiular ase where X is a pre�xode, it is easy to solve the membership problem for X� in an optimal timeO(jwj) after a O(jXj) preproessing step.Example 7 Let X = fa2; a4b; a3ba; a2b; abg. For the word w = a5b, it is ne-essary to follow the suÆx hain SuÆxChain(a4b) = (a4b; a2b; ab) sine afterparsing w the automaton is in the state orresponding to a4b and the uniqueX-deomposition is a5b = a2 � a2 � ab. Figure 4 shows the tree TX (left), theautomaton AX with the links representing the failure funtion Border (middle)and the SuÆxLink representing the suÆx hains (right) to add to the Aho-Corasik automaton.Aknowledgements We thank the referee for pointing us the referene toJ. Shallit's [14℄ used in Example 3. The style for algorithms is algohl.sty from11

aa ba bbab a
aa ba bbab a

aa ba bbab aFig. 4. For the set X = fa2; a4b; a3ba; a2b; abg of example 7: Tree TX (left),Aho-Corasik automaton with links Border (middle) and the new links SuÆxLink(right) to add to the Aho-Corasik automaton.[16℄ and automata are drawn thanks to gastex.Referenes[1℄ M.-P. Sh�utzenberger, A property of �nitely generated submonoids of freemonoids, in: G. Pollak (Ed.), Algebrai Theory of Semigroups (Pro. SixthAlgebrai Conf., Szeged,1976), North-Holland, Amsterdam, 1979, pp. 545{576.[2℄ A. Sardinas, G. Patterson, A neessary and suÆient ondition for the uniquedeomposition of oded messages, in: IRE Convention Reord, Part 8, 1953, pp.104{108.[3℄ A. Apostolio, R. Gianarlo, Pattern mathing implementation of a fast test forunique deipherability, Information Proessing Letters 18 (1984) 155{158.[4℄ M. Rodeh, A fast test for unique deipherability based on suÆx trees, IEEETrans. Inform. Theory 28 (1982) 648{651.[5℄ C. M. Ho�mann, A note on unique deipherability, in: MFCS, Vol. 176 ofLeture Notes in Computer Siene, Springer-Verlag New York, In., 1984, pp.50{63.[6℄ R. MCloskey, An o(n2) time algorithm for deiding whether a regular languageis a ode, Journal of Computing and Information 2 (1) (1996) 79{89, speialIssue: Proeedings of the 8th international Conferene on Computing andInformation (ICCI'96).[7℄ Z. Galil, Open problems in stringology, in: A. Apostolio, Z. Galil (Eds.),Combinatorial Algorithms on Words, Springer-Verlag, Berlin, 1985, pp. 1{8.12

[8℄ D. Perrin, Finite automata, in: J. Leeuwen (Ed.), Handbook of TheoretialComputer Siene, Formal Models and Semantis, Vol. B, Elsevier, 1990, pp.1{57.[9℄ J. Hoproft, R. Motwani, J. Ullman, Introdution to Automata Theory,Languages and Computation, Addison-Wesley, 2001.[10℄ J. Sakarovith, El�ements de th�eorie des automates, Vuibert, 2003.[11℄ S. Yu, Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook ofFormal Languages, Springer-Verlag New York, In., 1997, pp. 41{110.[12℄ D. Revuz, Minimisation of ayli deterministi automata in linear time, Theor.Comput. Si. 92 (1) (1992) 181{189.[13℄ S. Yu, State omplexity of regular languages, in: Proeedings of DesriptionalComplexity of Automata, Grammars and Related Strutures, 1999, pp. 77{88.[14℄ J. Shallit, Regular expressions, enumeration and state omplexity, invitedtalk at Ninth International Conferene on Implementation and Appliation ofAutomata (CIAA 2004) Queen's University, Kingston, Ontario, Canada, July22-24, 2004.[15℄ M. Crohemore, W. Rytter, Jewels of Stringology, World Sienti� Publishing,Hong-Kong, 2002, 310 pages.[16℄ M. Crohemore, C. Hanart, T. Leroq, Algorithmique du texte, Vuibert, 2001,347 pages.[17℄ A. V. Aho, M. J. Corasik, EÆient string mathing: an aid to bibliographisearh, Commun. ACM 18 (6) (1975) 333{340.

13

