
Parsing with a �nite di
tionaryJulien Cl�ement a , Jean-Pierre Duval b , Giovanna Guaiana b ,Dominique Perrin a and Giuseppina Rindone aaInstitut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, Fran
ebLIFAR, Universit�e de Rouen, Fran
eAbstra
tWe address the following issue: given a word w 2 A� and a set of n nonempty wordsX, how to determine eÆ
iently whether w 2 X� or not? We dis
uss several methodsin
luding an O(r� jwj+ jXj) algorithm for this problem where r � n is the lengthof a longest suÆx
hain of X and jXj is the sum of the lengths of words in X. Wealso
onsider the more general problem of providing all the de
ompositions of w inwords of X.Key words: Finite automata, string mat
hing
1 Introdu
tionThe
omplexity of algorithms related to �nite automata and regular expres-sions is well-known in general. In this arti
le, we fo
us on a parti
ular problem,namely the
omplexity of parsing a regular language of the form Y = X� whereX is a �nite set of nonempty words. This type of language o

urs often in theappli
ations, when X is a di
tionary and Y is the set of texts obtained byarbitrary
on
atenations of strings from this di
tionary. The time and spa
e
omplexity
an be an important issue in su
h appli
ations sin
e the di
tionar-ies used for natural languages
an
ontain up to several million words.As a
onsequen
e of general
onstru
tions from automata theory, any regularlanguage
an be parsed in time proportional to the produ
t of the size of theEmail addresses: Julien.Clement�univ-mlv.fr (Julien Cl�ement),Jean-Pierre.Duval�univ-rouen.fr (Jean-Pierre Duval),Giovanna.Guaiana�univ-rouen.fr (Giovanna Guaiana),Dominique.Perrin�univ-mlv.fr (Dominique Perrin),Giuseppina.Rindone�univ-mlv.fr (Giuseppina Rindone).Preprint submitted to Elsevier S
ien
e 10 January 2005

regular expression by the length of the input word. This just amounts to simu-lating a nondeterministi
 automaton built in a standard way from the regularexpression. Using a deterministi
 automaton produ
es a linear-time algorithmafter
ompleting a determinization algorithm whi
h may itself be exponential.Our main result here is an algorithm allowing to parse a regular languageof the form X�, with X �nite, in time O(r � jwj + jXj) with r the lengthof a longest suÆx
hain in X, w the input word and jXj the sum of thelengths of words in X (Se
tions 4 and 5). The quantity r depending only onthe set X is upper-bounded by Card(X). This algorithm allows to get all thede
ompositions of the input word in words of X. We also dis
uss some furtherproblems on the automata related to regular expressions of this type (Se
tion3).The motivation of our study is in the work of S
h�utzenberger on this typeof languages. He has shown that although the size of the automaton dependson the length of the words in X, several synta
ti
 parameters depend onlyon the
ardinality of X (see [1℄). One of them is linked with the numberof interpretations of a word in words of X, and is related with the problem
onsidered here.A similar yet unsolved problem is the
omplexity of the problem of unambi-guity of the expression X�, i.e. of the problem of testing whether X is a
ode.The standard algorithm [2℄ gives a quadrati

omplexity O(jXj2) where jXj isthe total length of the words of X. It was lowered later to O(Card(X)� jXj)by various authors [3{6℄. However it is not known whether there exists a linearalgorithm (see [7℄).2 Preliminaries and notationsFor a more
omplete des
ription of automata and fundamentals of formallanguages, the reader is referred to [8{10℄ and to [11℄ in parti
ular for a re
entoverview on re
ognizable languages in free monoids.Let A be a �nite alphabet. We denote by " the empty word and by A� (resp.A+) the set of �nite words (resp. nonempty �nite words) on A. For a wordw 2 A�, we denote by jwj the length of w, by w[j℄ for 0 � j < jwj the letterof index j in w, and by w[j::k℄ = w[j℄w[j + 1℄ � � �w[k℄. For any de
ompositionw = uv with u; v 2 A� we say that u and v are respe
tively a pre�x and asuÆx of w. The suÆx v is said to be proper if v 6= w.For a �nite set X of words on A, we denote by Pref (X) and Su� (X) theset of pre�xes and suÆxes of the words of X respe
tively, by Card(X) the2

ardinality of X and by jXj the sum of the lengths of words of X, that isjXj = Xx2X jxj:We denote a nondeterministi
 �nite automaton over the alphabet A by A =(Q; Æ; i; T) where Q is the set of states, i 2 Q is the initial state, T � Q is theset of terminal states and Æ is the transition fun
tion. We use ℄A to denotethe number of states of A. We abbreviate by NFA a nondeterministi
 �niteautomaton and by DFA a deterministi
 �nite automaton.3 Using deterministi
 automataBefore presenting our algorithm, we examine what would be the
lassi
al ap-proa
h to
he
k if a word w is in X�. A natural idea is to build an automatonfor X�. We
onsider the following pro
ess: (i) build a �nite automaton for X,(ii) modify this automaton to a

ept X� (doing so, we usually get an NFA),and (iii) �nally get a DFA after a
lassi
al determinization pro
edure. Anoptional fourth step
ould be to minimize the resulting automaton.Automata for a �nite set of words X. First we
onsider three simpleways of building an automaton for a �nite set of words X.(1) The \solar" automaton SX whi
h is obtained as follows: we build oneautomaton per word x 2 X with jxj + 1 states and merge all the initialstates (see Fig. 1). Note that this NFA is a tree with root i and that℄SX = jXj+ 1.
aa b ba b aabb ab baa ba b b ba bbaa b

Fig. 1. The solar NFA SX (left), the tree DFA TX (middle) and the minimal DFAMX for X = faa; ab; bb; aba; abbg. 3

(2) The tree automaton TX (see Fig. 1): this is a tree whi
h
olle
ts wordssharing a
ommon pre�x. In terms of automata, the set of states
orre-sponds to the set of pre�xes and we haveTX = (Q = Pref (X); Æ; i = "; T = X)with Æ(p; a) = pa if p; pa 2 Pref (X) and a 2 A. This DFA has ℄TX =Card(Pref (X)) states. a bab ba a b a bab
baa ba b b" "" " "

Fig. 2. The
ower automaton merge(SX) (left) and the NFA star (TX) (right) forX = faa; ab; bb; aba; abbg.(3) The minimal automatonMX (see Fig. 1). Given the set X a more elabo-rate method is to build the minimal DFAMX re
ognizingX. For instan
eone
an apply a minimization algorithm to the tree automata TX in lineartime with respe
t to jXj [12℄. Of
ourse MX is not ne
essary a tree.Automata for the language X�. A straightforward way to build an NFAre
ognizing the language X� from an automaton A = (Q; Æ; i; T) re
ognizingX is to add "-transitions from ea
h �nal state of T to the initial state i. Wedenote this automaton by star(A) (see Fig. 2). To save a little more spa
e, wealso merge all the terminal states without outgoing transitions with the initialstate: this yields an automaton merge(A). Doing so with the solar automatonSX , we obtain merge(SX) the
lassi
al
ower automaton of X� (see Fig. 2).Applying the
lassi
al powerset
onstru
tion to one of the previous automataa

epting X�, we obtain a DFA for X�.Note that the determinization pro
edure gives the same result either startingfrom star(SX) or from star(TX), due to their tree-like stru
tures. The same istrue with merge instead of star .In general, for an NFA A, the determinization pro
edure builds a DFA whosenumber of states is trivially bounded by 2℄A. However, when we
onsider theparti
ular
ase of X� with X �nite,
ould an exponential blow-up really hap-pen? The following example shows that the answer is positive.4

Example 1 Let us
onsider X = Aka + b with k > 0. It is easy to give anNFA for X� with k+1 states (see Fig. 3). The determinization leads to a DFAwith �(2k) states. a a aaaa b b bbbb
Fig. 3. An NFA for X� with the set X = Aka+ b (k = 5) of Example 1.Another question is to �nd if we
an relate the number of states of a DFA forX� to jXj. Until re
ently, it was thought that it
ould not ex
eed �(jXj2),a bound whi
h was shown to be rea
hable in [13℄, as stated in the followingexample.Example 2 For an integer h > 1, take X = fah�1; ahg. The tree DFA TXand the minimal DFA MX are the same and have h+1 = �(jXj) states. Theminimal DFA for X� has �(jXj2) states (see [13℄).J. Shallit showed in [14℄ with the following example that an exponential blow-up is also possible.Example 3 Let h � 3 and letX = fbg [faibah�i�1j1 � i � h� 2g [fbah�2bg:The minimal DFA a

epting X� has exa
tly 3(h � 1)2h�3 + 2h�2 states [14℄.Note that the size is exponential of order �(h2h) whereas Card(X) = �(h)and jXj = �(h2).The problem of �nding a tight upper bound for the number of states of theminimal DFA for X� in terms of the total length jXj is
alled by this author[14℄ the non-
ommutative Frobenius problem.The number of states of the minimal automata obtained for the family ofsets used in Example 3 is �(h2h) where h = �(jXj1=2). A priori, the upperbound for a DFA obtained by determinization of a NFA for X� with �(jXj)states is �(2jXj). Experiments performed on the family of Example 3 show thatthe DFA obtained by determinization (before minimization) has also �(h2h)states, and not �(2h2). We do not know in general whether(i) it is possible that the minimal DFA for X� has �(2jXj) states;5

(ii) it is possible that the DFA obtained by determinization has �(2jXj) states.Simulating the determinization pro
ess. A way to avoid the deter-minization step would be to simulate the determinized automaton while pars-ing the word w. Given a NFA A a

epting the language X� with X a �niteset of words, this gives an algorithm of time
omplexity O(℄A� jwj) and thespa
e required to simulate the determinization pro
ess is ℄A. Sin
e the num-ber of states of the NFA
an be of order O(jXj), this approa
h gives a time
omplexity O(jXj� jwj) in the worst
ase. As an example of su
h a situation,we have the set X = fakb; ag with k > 0.4 Using string mat
hing ma
hinesThe methods dis
ussed in the previous se
tion do not lead to an optimalalgorithm in O(jwj). Indeed, either we use a DFA and we fa
e a
omputationwhi
h
an be exponential in jXj or we simulate the DFA and we obtain analgorithm in O(jXj � jwj). We now
onsider a di�erent approa
h whi
h leadsto a lower
omplexity.Another advantage of the proposed approa
h is to possibly solve a more generalproblem. Indeed, we may be interested in obtaining the set of all de
omposi-tions of the input word overX. This
annot be a
hieved using a DFA a

eptingX� given for instan
e by the methods des
ribed in the previous se
tion.Let X = fx0; : : : ; xn�1g be a set of n words of A+. We present in this se
tionan algorithm, using
lassi
 pattern mat
hing te
hniques, whi
h gives all theX-de
ompositions of w (the de
ompositions of w as
on
atenations of wordsof X). Then we derive a membership test for X� in O(Card(X) � jwj) time
omplexity. In the next se
tion, we shall study a further improvement of thisalgorithm.4.1 De
ompositionsThe following remark is the basis of our algorithm. An X-de
omposition of wis always the extension of an X-de
omposition of a pre�x of w.We
onsider the pre�x w[0::i℄ of length i + 1 of w. The word w[0::i℄ admitsan X-de
omposition ending with a word x` if and only if w[0::i℄ = fx` for aword f in X�. In other terms, w[0::i℄ admits an X-de
omposition ending withx` if and only if x` is a suÆx of w[0::i℄ and w[0::i� jx`j℄ 2 X�. We obtain all6

the X-de
ompositions of w[0::i℄ by examining all the words of X whi
h aresuÆxes of w[0::i℄ and whi
h extend a previous X-de
omposition. Of
ourse,when w[0::i℄ = w, we get all the X-de
ompositions of w.So the idea of the algorithm is the following: build, for ea
h word x` 2 X, adeterministi
 automaton A` a

epting the language A�x` and use an auxiliaryarray D of size jwj su
h thatD[i℄ = f` 2 [0::n� 1℄ j w[0::i℄ 2 X�x`g:Then testing if w[0::i℄ ends by the word x` is equivalent to
he
king thatthe automaton A` is in a terminal state after reading w[0::i℄. Also testing ifw[0::i� jx`j℄ 2 X� is equivalent to
he
king that D[i� jx`j℄ 6= ;.In the following algorithm, the input word w is read simultaneously by all the nautomata, letter by letter, from left to right. We use, for te
hni
al
onvenien
e,an additional element D[�1℄ initialized to an arbitrary non-empty set (forinstan
e f1g) meaning that the pre�x " of w is always in X�. At the end ofthe s
anning of w, provided D[jwj � 1℄ 6= ;, we
an pro
ess the array D fromthe end to the beginning and re
over all the X-de
ompositions for instan
ewith a re
ursive pro
edure like PrintAllDe
ompositions() (see below).For ea
h word x` 2 X, the automaton A`
onsidered here is the minimalautomaton whi
h re
ognizes the language A�x`. This automaton is de�ned byA` = (Q` = Pref (x`); Æ`; i` = "; t` = x`) where the transition fun
tion Æ` isde�ned, for p 2 Pref (X) and a 2 A, byÆ`(p; a) = the longest suÆx of pa whi
h belongs to Pref (x`):We use these prin
iples in the following algorithm.IsDe
omposedAll(w;X = fx0; : : : ; xn�1g)1 . Prepro
essing step2 for ` 0 to n� 1 do3 A` AutomatonFromWord(x`)4 . Main loop5 for ` 0 to n� 1 do6 . p` is the
urrent state of the automaton A`.7 p` i`8 D[�1℄ f1g9 for i 0 to jwj � 1 do10 D[i℄ ;11 for ` 0 to n� 1 do12 p` Æ`(p`; w[i℄)13 if p` = t` and D[i� jx`j℄ 6= ; then14 D[i℄ D[i℄ [f`g15 return D 7

The algorithm returns an array of size O(Card(X)� jwj). The prepro
essingstep whi
h builds automata requires a time O(jXj) and a spa
e O(jXj �Card(A)) (or O(jXj) if automata are represented with the help of a failurefun
tion as usually made in stringology [15,16℄).Note that we do not need to build all the automata A` in the prepro
essingstep. We
an also
hoose to
onstru
t in a lazy way the a

essible part of theautomata (
orresponding for ea
h automatonA` to the pre�xes of x` o

urringin w) along the pro
essing of the input word w. For the sake of
larity, wehave
hosen to distinguish the prepro
essing step from the rest. In view of thisremark, we
ould omit the
omplexity O(jXj) of the prepro
essing step in thefollowing proposition.Proposition 4 The time and spa
e
omplexity of the algorithm IsDe
om-posedAll() is O(Card(X)� jwj+ jXj).Given the array D
omputed by the pro
edure IsDe
omposedAll() for aword w, it is quite straightforward to print all the de
ompositions of w thanksto the following two pro
edures:PrintAllDe
ompositions(w;X = fx0; : : : ; xn�1g)1 D IsDe
omposedAll(w;X)2 L emptyList3 Re
PrintAllDe
ompositions(D; jwj � 1; L)Re
PrintAllDe
ompositions(D;h;L)1 if h = �1 then2 Print(L)3 else for j 2 D[h℄ do4 Re
PrintAllDe
ompositions(D;h � jxjj; xj � L)For a word w belonging to X� the pro
edure PrintAllDe
ompositions()prints every X-de
omposition of w in the form xi0 � xi1 � � �xip .If we want only one X-de
omposition of w, it suÆ
es to store in D[i℄ only oneword x of X
orresponding to an X-de
omposition of w[0::i℄ ending with thisx. The spa
e required for the array then be
omes O(jwj).4.2 Membership testWhen we are only interested in testing the membership of w in X�, we
ansimply use a Boolean array D setting D[i℄ = true if and only if there exists8

x 2 X su
h that w[0::i℄ 2 X�x. Moreover, it suÆ
es to use a
ir
ular Booleanarray D[0::k℄ with k = maxx2X jxj (instead of jwj+ 1), and
ompute indexesin this array modulo k+1 (whi
h means that for m 2 Z, one has D[m℄ = D[r℄with 0 � r < k+1 andm = r mod (k+1)). This yields the following algorithm.Membership(w;X = fx0; : : : ; xn�1g)1 . Prepro
essing step2 for ` 0 to n� 1 do3 A` AutomatonFromWord(x`)4 . Main loop5 for ` 0 to n� 1 do6 . p` is the
urrent state of the automaton A`.7 p` i`8 D[�1℄ true9 for i 0 to jwj � 1 do10 D[i℄ false11 for ` 0 to n� 1 do12 p` Æ`(p`; w[i℄)13 ` 014 do if (p` = t` and D[i� jx`j℄ = true) then15 D[i℄ true16 ` `+ 117 while (` < n and D[i℄ = false)18 return D[jwj � 1℄We
an easily modify the algorithm while preserving the same
omplexity byexiting whenever all the elements of the array D from 0 to k are equal to false.In this
ase, w 62 X�.The following proposition gives the
omplexity of the above algorithm.Proposition 5 The time
omplexity of the algorithmMembership() is O(Card(X)�jwj+ jXj).The analysis of the spa
e
omplexity shows that, ex
ept for the prepro
essingstep, the algorithm needs only O(maxx2X jxj) additional spa
e. In parti
ular,the spa
e
omplexity is independent of the length of the input word.5 String mat
hing automatonIn the pre
eding se
tion, we used for ea
h word x` 2 X a distin
t automatonA`
orresponding to A�x`. To get a more eÆ
ient algorithm, we resort in thisse
tion to the well-known Aho-Corasi
k algorithm [17℄ whi
h builds from a9

�nite set of words X a deterministi

omplete automaton (not ne
essarilyminimal) AX re
ognizing the language A�X. This automaton is the basis ofmany eÆ
ient algorithms on string mat
hing problems and is often
alledthe string mat
hing automaton. It is a generalization of the automaton A`asso
iated to a single word. Let us brie
y re
all its
onstru
tion. We let AX =(Pref (X); Æ; ";Pref (X) \ A�X) be the automaton where the set of states isPref (X), the initial state is ", the set of �nal states is Pref (X) \ A�X andthe transition fun
tion Æ is de�ned byÆ(p; a) = the longest suÆx of pa whi
h belongs to Pref (X):We asso
iate to ea
h word u 2 A�, u 6= ", the word BorderX(u), or simplyBorder(u) when there is no ambiguity, de�ned byBorder(u) = the longest proper suÆx of u whi
h belongs to Pref (X):The automaton AX
an be easily built from the tree TX (
f. the se
tion 3) ofX by a breadth-�rst exploration and using the Border fun
tion. Indeed, onehas Æ(p; a) = 8>>>>><>>>>>: pa if pa 2 Pref (X)Æ(Border(p); a) if p 6= " and pa 62 Pref (X)" otherwiseA state p is terminal for AX if p is a word of X (i.e. p is terminal in the treeTX of X) or if a proper suÆx of p is a word of X. The automaton AX
an bebuilt in time and spa
e
omplexity O(jXj) if we use the fun
tion Border as afailure fun
tion (see [15,16℄ for implementation details).We will say, for simpli
ity, that a state of the automaton is marked if it
orre-sponds to a word of X and not marked otherwise. A major di�eren
e indu
edby the Aho-Corasi
k automaton is that a terminal state p, marked or not,
or-responds to an ordered set Su� (p)\X of suÆxes of p. The order
onsidered isgiven by the suÆx relation �su� where u �su� v means that v is a proper suÆxof u. We denote by SuÆxChain(p) the sequen
e of words in Su� (p) \ X or-dered by this relation. To �nd easily the words of SuÆxChain(p), we asso
iateto ea
h terminal state p of AX the stateSuÆxLink(p) = the longest proper suÆx of p whi
h belongs to X.Thus we haveSuÆxLink(p) = 8>>>>><>>>>>:Border(p) if Border(p) 2 XSuÆxLink(Border(p)) if Border(p) 62 X and Border(p) 6= "unde�ned otherwise10

Sin
e SuÆxLink(p) is
omputed in time O(jpj), the prepro
essing
an be donein time and spa
e
omplexity O(jXj), i.e. the
omplexity of Aho-Corasi
kalgorithm.To de
ide whether an input word w belongs to X� or not (and get eventuallyits X-de
ompositions), we use the same te
hnique as in the previous se
tion,
onsidering this time the automaton AX (instead of the n automata A`).The immediate advantage is that ea
h letter of the word w is read only on
e(meaning that only one transition is made in the automaton) whereas ea
hletter was read n times before (one per automaton A`).Let us suppose that for the
urrent pre�x w[0::i℄ of w, the automatonAX endsin a terminal state p. This means that w[0::i℄ = fp with f 2 A� and p thelongest suÆx of w[0::i℄ in Pref (X) \ A�X. Consequently, w[0::i℄ 2 X� if andonly if w[0::i � jxj℄ 2 X� for at least one word x of SuÆxChain(p). This iseasily
he
ked using the marking of terminal states (whether they
orrespondexa
tly to a word of X or not), the fun
tion SuÆxLink(p) and the array D(whi
h plays exa
tly the same role as in the previous se
tion).This yields our main result, stated in the following proposition.Proposition 6 Let X be a �nite set of words on A. The membership test ofa word w in X�
an be done in time O(r� jwj+ jXj) where r is the maximallength of the suÆx
hains in X.The spa
e
omplexity in
ludes O(jXj) for the prepro
essing step (building theAho-Corasi
k automaton) and O(maxx2X jxj) for the rest of the algorithm.IfX is a suÆx
ode, the
omplexity, ex
ept for the prepro
essing step, be
omesO(jwj) whi
h is optimal, whereas the worst
ase happens when all words aresuÆxes of one another giving the same
omplexity O(Card(X) � jwj) as inthe previous se
tion. Note also that in the parti
ular
ase where X is a pre�x
ode, it is easy to solve the membership problem for X� in an optimal timeO(jwj) after a O(jXj) prepro
essing step.Example 7 Let X = fa2; a4b; a3ba; a2b; abg. For the word w = a5b, it is ne-
essary to follow the suÆx
hain SuÆxChain(a4b) = (a4b; a2b; ab) sin
e afterparsing w the automaton is in the state
orresponding to a4b and the uniqueX-de
omposition is a5b = a2 � a2 � ab. Figure 4 shows the tree TX (left), theautomaton AX with the links representing the failure fun
tion Border (middle)and the SuÆxLink representing the suÆx
hains (right) to add to the Aho-Corasi
k automaton.A
knowledgements We thank the referee for pointing us the referen
e toJ. Shallit's [14℄ used in Example 3. The style for algorithms is algo
hl.sty from11

aa ba bbab a
aa ba bbab a

aa ba bbab aFig. 4. For the set X = fa2; a4b; a3ba; a2b; abg of example 7: Tree TX (left),Aho-Corasi
k automaton with links Border (middle) and the new links SuÆxLink(right) to add to the Aho-Corasi
k automaton.[16℄ and automata are drawn thanks to gastex.Referen
es[1℄ M.-P. S
h�utzenberger, A property of �nitely generated submonoids of freemonoids, in: G. Pollak (Ed.), Algebrai
 Theory of Semigroups (Pro
. SixthAlgebrai
 Conf., Szeged,1976), North-Holland, Amsterdam, 1979, pp. 545{576.[2℄ A. Sardinas, G. Patterson, A ne
essary and suÆ
ient
ondition for the uniquede
omposition of
oded messages, in: IRE Convention Re
ord, Part 8, 1953, pp.104{108.[3℄ A. Apostoli
o, R. Gian
arlo, Pattern mat
hing implementation of a fast test forunique de
ipherability, Information Pro
essing Letters 18 (1984) 155{158.[4℄ M. Rodeh, A fast test for unique de
ipherability based on suÆx trees, IEEETrans. Inform. Theory 28 (1982) 648{651.[5℄ C. M. Ho�mann, A note on unique de
ipherability, in: MFCS, Vol. 176 ofLe
ture Notes in Computer S
ien
e, Springer-Verlag New York, In
., 1984, pp.50{63.[6℄ R. M
Closkey, An o(n2) time algorithm for de
iding whether a regular languageis a
ode, Journal of Computing and Information 2 (1) (1996) 79{89, spe
ialIssue: Pro
eedings of the 8th international Conferen
e on Computing andInformation (ICCI'96).[7℄ Z. Galil, Open problems in stringology, in: A. Apostoli
o, Z. Galil (Eds.),Combinatorial Algorithms on Words, Springer-Verlag, Berlin, 1985, pp. 1{8.12

[8℄ D. Perrin, Finite automata, in: J. Leeuwen (Ed.), Handbook of Theoreti
alComputer S
ien
e, Formal Models and Semanti
s, Vol. B, Elsevier, 1990, pp.1{57.[9℄ J. Hop
roft, R. Motwani, J. Ullman, Introdu
tion to Automata Theory,Languages and Computation, Addison-Wesley, 2001.[10℄ J. Sakarovit
h, El�ements de th�eorie des automates, Vuibert, 2003.[11℄ S. Yu, Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook ofFormal Languages, Springer-Verlag New York, In
., 1997, pp. 41{110.[12℄ D. Revuz, Minimisation of a
y
li
 deterministi
 automata in linear time, Theor.Comput. S
i. 92 (1) (1992) 181{189.[13℄ S. Yu, State
omplexity of regular languages, in: Pro
eedings of Des
riptionalComplexity of Automata, Grammars and Related Stru
tures, 1999, pp. 77{88.[14℄ J. Shallit, Regular expressions, enumeration and state
omplexity, invitedtalk at Ninth International Conferen
e on Implementation and Appli
ation ofAutomata (CIAA 2004) Queen's University, Kingston, Ontario, Canada, July22-24, 2004.[15℄ M. Cro
hemore, W. Rytter, Jewels of Stringology, World S
ienti�
 Publishing,Hong-Kong, 2002, 310 pages.[16℄ M. Cro
hemore, C. Han
art, T. Le
roq, Algorithmique du texte, Vuibert, 2001,347 pages.[17℄ A. V. Aho, M. J. Corasi
k, EÆ
ient string mat
hing: an aid to bibliographi
sear
h, Commun. ACM 18 (6) (1975) 333{340.

13

