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Optimal Prefix Codes for Pairs of Geometrically
Distributed Random Variables

Frédérique Bassino, Julien Clément, Gadiel Seroussi, Fellow, IEEE, and Alfredo Viola

Abstract—Optimal prefix codes are studied for pairs of inde-
pendent, integer-valued symbols emitted by a source with a geo-
metric probability distribution of parameter ¢, 0 < ¢ < 1. By
encoding pairs of symbols, it may be possible to reduce the re-
dundancy penalty of symbol-by-symbol encoding, while preserving
the simplicity of the encoding and decoding procedures typical of
Golomb codes and their variants. It is shown that optimal codes
for these so-called two-dimensional (2-D) geometric distributions
are parameter singular, in the sense that a prefix code that is op-
timal for one value of the parameter ¢ cannot be optimal for any
other value of g. This is in sharp contrast to the one-dimensional
(1-D) case, where codes are optimal for positive-length intervals
of the parameter 4. Thus, in the 2-D case, it is infeasible to give a
compact characterization of optimal codes for all values of the pa-
rameter ¢, as was done in the 1-D case. Instead, optimal codes are
characterized for a discrete sequence of values of ¢ that provides
good coverage of the unit interval. Specifically, optimal prefix codes
are described for ¢ = 27 /% (k > 1), covering the range ¢ > 1,
and g = 2% (k > 1), covering the range ¢ < f The described
codes produce the expected reduction in redundancy with respect
to the 1-D case, while maintaining low-complexity coding opera-
tions.

Index Terms—Codes for countable alphabets, geometric dis-
tributions, Golomb codes, Huffman codes, lossless compression,
prefix codes.

I. INTRODUCTION

N 1966, Golomb [1] described optimal binary prefix codes
for some geometric distributions over the nonnegative inte-
gers, namely, distributions with probabilities p(4) of the form

p(i)=(1-q)', i>0
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for some real-valued parameter ¢, 0 < ¢ < 1. In [2], these
Golomb codes were shown to be optimal for all geometric distri-
butions. These distributions occur, for example, when encoding
run lengths (the original motivation in [1]), and in image com-
pression when encoding prediction residuals, which are well
modeled by two-sided geometric distributions. Optimal codes
for the latter were characterized in [3], based on some combina-
tions and variants of Golomb codes. Codes based on the Golomb
construction have the practical advantage of allowing the en-
coding of a symbol ¢ using a simple explicit computation on the
integer value of 4, without recourse to nontrivial data structures
or tables. This has led to their adoption in many practical appli-
cations (cf., [4] and [5]).

Symbol-by-symbol encoding, however, can incur significant
redundancy relative to the entropy of the distribution, even
when dealing with sequences of independent, identically dis-
tributed random variables. One way to mitigate this problem,
while keeping the simplicity and low latency of the encoding
and decoding operations, is to consider short blocks of d > 1
symbols, and use a prefix code for the blocks. In this paper, we
study optimal prefix codes for pairs (blocks of length d = 2)
of independent, identically distributed geometric random vari-
ables, namely, distributions on pairs of nonnegative integers
(4, j) with probabilities of the form

P(i,j) = pi)p(s) = (1 — q)¢'"

We refer to this distribution as a two-dimensional (2-D) geo-
metric distribution (TDGD), defined on the alphabet of integer
pairs A = {(i,7) | ¢,7 > 0}. For succinctness, we denote a
TDGD of parameter ¢ by TDGD(g).

Aside from the mentioned practical motivation, the problem
is of intrinsic combinatorial interest. It was proved in [6] (see
also [7]) that, if the entropy! — > . 4 P(a)log P(a) of a dis-
tribution over a countable alphabet .4 is finite, optimal codes
exist and can be obtained, in the limit, from Huffman codes for
truncated versions of the alphabet. However, the proof does not
give a general way for effectively constructing optimal codes,
and in fact, there are few families of distributions over countable
alphabets for which an effective construction is known [8], [9].
An algorithmic approach to building optimal codes is presented
in [9], which covers geometric distributions and various gener-
alizations. The approach, though, is not applicable to TDGDs,
as explicitly noted in [9].

Some characteristic properties of the families of optimal
codes for geometric and related distributions in the 1-D case
turn out not to hold in the 2-D case. Specifically, the optimal

iLj>0. (1)

log x and In = will denote, respectively, the base-2 and the natural logarithm
of x.
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codes described in [1] and [3] correspond to binary trees of
bounded width, namely, the number of codewords of any given
length is upper bounded by a quantity that depends only on
the code parameters. Also, the family of optimal codes in each
case partitions the parameter space into regions of positive
volume, such that all the corresponding distributions in a region
admit the same optimal code. These properties do not hold in
the case of optimal codes for TDGDs. In particular, optimal
codes for TDGDs turn out to be parameter singular, in the
sense that if a code 7 is optimal for TDGD(g), then 7, is not
optimal for TDGD(¢’) for any parameter value ¢’ # ¢. This
result is presented in Section III. (A related but somewhat dual
problem, namely, counting the number of distinct trees that
can be optimal for a given source over a countable alphabet, is
studied in [10].)

An important consequence of this singularity is that any set
containing optimal codes for all values of ¢ must be uncount-
able, and thus, it would be infeasible to give a compact char-
acterization of such a set, as was done in [1] or [3] for 1-D
cases.2 Thus, from a practical point of view, the best we can
expect is to characterize optimal codes for countable sequences
of parameter values. In this paper, we present such a character-
ization, for a sequence of parameter values that provides good
coverage of the range of 0 < ¢ < 1. Specifically, in Section IV,
we describe the construction of optimal codes for TDGD(q)
with ¢ = 2= V¥ for integers k£ > 1,3 covering the range ¢ > 1
and in Section V, we do so for TDGD(g) with ¢ = 2~ for in-
tegers k > 1, covering the range g < % (thus, overall, we show
optimal codes for all values of ¢ such that — log ¢ is either an
integer or the inverse of one). In the case ¢ < %, we observe
that, as k — oo (¢ — 0), the optimal codes described converge
to a limit code, in the sense that the codeword for any given
pair (a,b) remains the same for all & > ko(a,b), where kq is
a threshold that can be computed from a and b (this limit code
is also mentioned, without proofs, in [11]). The codes in both
constructions are of unbounded width. However, they are reg-
ular [12], in the sense that the corresponding infinite trees have
only a finite number of nonisomorphic whole subtrees (i.e., sub-
trees consisting of a node and all of its descendants). This allows
for deriving recursions and explicit expressions for the average
code length, as well as feasible encoding/decoding procedures.
Notice that, to the best of our knowledge, the only case for which
an optimal code for a TDGD had been characterized prior to this
work was the trivial case g = %, in which case encoding each
component of (4, j) separately with a unary code (i.e., a Golomb
code of order one) has zero redundancy, and is thus optimal.

Practical considerations, and the redundancy of the new
codes, are discussed in Section VI, where we present redun-
dancy plots and comparisons with symbol-by-symbol Golomb
coding and with the optimal code for a TDGD for each plotted
value of ¢ (optimal average code lengths for arbitrary values of
g were estimated numerically to sufficiently high precision). We
also derive an exact expression for the asymptotic oscillatory

2Loosely, by a compact characterization we mean one in which each code
is characterized by a finite number of finite parameters, which drive the corre-
sponding encoding/decoding procedures.

3These are the same distributions for which optimality of Golomb codes was
originally established in [1].
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behavior of the redundancy of the new codes as ¢ — 1. The
study confirms the redundancy gains over symbol-by-symbol
encoding with Golomb codes, and the fact that the discrete
sequence of codes presented provides a good approximation to
the full class of optimal codes over the range of the parameter q.
Our constructions and proofs of optimality rely on the tech-
nique of Gallager and Van Voorhis [2], which was also used in
[3]. As noted in [2], most of the work and ingenuity in applying
the technique goes into discovering appropriate “guesses” of the
basic components on which the construction iterates, and in de-
scribing the structure of the resulting codes. With the correct
guesses, the proofs are straightforward. The technique of [2] is
reviewed in Section II, where we also introduce some defini-
tions and notation that will be useful throughout the paper.

II. PRELIMINARIES

A. Definitions

We are interested in encoding the alphabet A of integer pairs
(é,4), ¢, j > 0, using a binary prefix code C (we will refer to
C plainly as a code, the binary and prefix properties assumed
throughout). As usual, we associate C' with a rooted (infinite)
binary tree, whose leaves correspond, bijectively, to symbols in
A, and where each branch is labeled with a binary digit. The
binary codeword assigned to a symbol is “read off,” the labels
on the path from the root to the corresponding leaf. The depth
of a node « in a tree T, denoted depth(x), is the number of
branches on the path from the root to . By extension, the depth
(or height) of a finite tree is defined as the maximal depth of any
of its nodes. A level of T' is the set of all nodes at a given depth
¢ (we refer to this set as level £). Let n] denote the number of
leaves in level £ of T' (we will sometimes omit the superscript 7’
when clear from the context). We refer to the sequence {n} },>o
as the profile of T'. Two trees will be considered equivalent if
their profiles are identical. Thus, for a code C', we are only inter-
ested in its tree profile, or, equivalently, the length distribution
of its codewords. Given the profile of a tree, and an ordering of
A in decreasing probability order, it is always possible to define
a canonical tree (say, by assigning leaves in alphabetical order;
see, e.g., [13]) that uniquely defines a code for 4. The notion
of tree equivalence adopted implies that given a tree, we can
arbitrarily permute the nodes at any level, since such a permu-
tation leaves the profile invariant. This will allow us to make,
without loss of generality, certain assumptions on the structure
of the tree. In particular, we will often make the assumption that
if a tree contains, say, at least 27 leaves at a certain level £, then
there is a set of 27 leaves at level £ that have a common ancestor*
v at level £ — j (an alphabetically ordered tree, in fact, always
has this property).

With a slight abuse of terminology, we will not distinguish
between a code and its corresponding tree (or profile), and will
refer to the same object sometimes as a tree and sometimes as a
code. Unless noted otherwise, all trees considered in this paper
are full, i.e., every node in the tree is either a leaf or the parent of

4We use the usual “family” terminology for trees: nodes have children, par-
ents, ancestors, and descendants. We also use the common convention of visu-
alizing trees with the root at the top and leaves at the bottom. Thus, ancestors
are “up,” and descendants are “down.”
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two children (full trees are sometimes referred to in the literature
as complete). A tree is balanced (or uniform) if it has 2¥ leaves,
all of them at depth %, for some % > 0. We denote such a tree by
U;.. We will restrict the use of the term subtree to refer to whole
subtrees of T', i.e., subtrees that consist of a node and all of its
descendants in T'.

We call s(4, ) = ¢+ J the signature of (i, j) € A. Fora given
value s = s(4, 7), there are s + 1 pairs with signature s, all with
the same probability, P(s) = (1 — ¢)?¢", under the distribution
(1). Given a code ', symbols of the same signature can be freely
permuted without affecting the properties of interest to us (e.g.,
average code length). Thus, for simplicity, we can also regard
the correspondence between leaves and symbols as one between
leaves and elements of the multiset

A=10,1,1,2,2,2,...,s,...,5,...}. )
N—

—
s+1 times

In constructing the tree, we do not distinguish between different
occurrences of a signature s; for actual encoding, the s + 1
leaves labeled with s are mapped to the symbols (0, s), (1, s —
1),...,(s,0) in some fixed order. In the sequel, we will often
ignore normalization factors for the signature probabilities P(s)
(in cases where normalization is inconsequential), and will use
instead weights w(s) = ¢*.

Consider a tree (or code) 7' for A. Let U be a subtree of 7',
and let s(x) denote the signature associated with a leaf z of U.
Let F(U) denote the set of leaves of U, referred to as its fringe.
We define the weight w,(U) of U as

zeF(U)

we(U) =

and the cost L,(U) of U as

L,(U) = Z depthy; (z)g>™
zeF(U)

(the subscript ¢ may be omitted when clear from the context).
When U = T, we have w,(T) = (1 — ¢)~2, and Zq(T)é(l -
q)2L,(T) is the average code length of T'. A tree T is optimal
for TDGD(q) if £L,(T) < £,(T") for any tree T".

B. Some Basic Objects and Operations

For & > 1, we say that a finite source with probabilities p; >
p2 > - > pn, N > 2, is a-uniform if p1 /py < «. A 2-uni-
form source is also called quasi-uniform. An optimal code for
a quasi-uniform source on N symbols consists of 2[108 V1 — v
codewords of length [log N|, and 2N — 2/ N1 codewords
of length [log N, the shorter codewords corresponding to the
more probable symbols [2]. We refer to such a code (or the as-
sociated tree) also as quasi-uniform, denote it by (J -, and de-
note by Qx (%) the codeword it assigns to the symbol associ-
ated with p,, 1 < ¢ < N. For convenience, we define (J;
as a null code, which assigns code length zero to the single
symbol in the alphabet. Clearly, for integers £ > 0, we have
(Q)or = Uy The fringe thickness of a finite tree T', denoted fr,
is the maximum difference between the depths of any two leaves
of T'. Quasi-uniform trees 7" have f; < 1, while uniform trees
have fr = 0. In Section IV, we present a characterization of
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optimal codes of fringe thickness two for 4-uniform distribu-
tions, which generalizes the quasi-uniform case. This general-
ization will help in the characterization of the optimal codes for
TDGD(q), ¢ = 2~ V/*.

The concatenation of two trees T and U, denoted 1" - U, is
obtained by attaching a copy of U to each leaf of 7. Regarded
as a code, 7" - U consists of all the possible concatenations # -
of aword ¢ € T with one u € U. The Golomb code of order
k > 1 [1], denoted G, encodes an integer ¢ by concatenating
Q1 (i mod k) with a unary encoding of |i/k| (e.g., |i/k| ones
followed by a zero). The first-order Golomb code (1 is just the
unary code, whose corresponding tree consists of a root with
one leaf child on the branch labeled 0, and, recursively, a copy
of (1 attached to the child on the branch labeled 1. Thus, we
have Gk = Qk . Gl.

C. Gallager—Van Voorhis Method

When proving optimality of infinite codes for TDGDs, we
will rely on the method due to Gallager and Van Voorhis [2],
which is briefly outlined next, adapted to our setting and termi-
nology.

1) Define a sequence of finite reduced sources (S:)72,.

The alphabet of the reduced source &; is a multiset
S; = H; U F;, where H; is a multiset comprising the
signatures 0,1,...,s — 1 (with multiplicities as in (2)),
and F; consists of a finite number of (possibly infinite)
subsets of A, referred to as virtual symbols, which form a
partition of the remaining signatures. We naturally asso-
ciate with each virtual symbol a weight equal to the sum
of the weights of the signatures it contains.

2) Verify that the sequence (S;)2°, is compatible with the
bottom-up Huffman procedure. This means that after a
number of merging steps of the Huffman algorithm on
the reduced source S, one gets S; 1. Proceed recursively,
until Sy is obtained.

3) Apply the Huffman algorithm to S.

While the sequence of reduced sources S; can be seen as
evolving “bottom-up,” the infinite code C' constructed results
from a “top-down” sequence of corresponding finite codes C;,
whose size grows with £, and which unfold by recursive reversal
of the mergers in the Huffman procedure. One shows that the se-
quence of codes (C');>o converges to an infinite code C, in the
sense that for every 7 > 1, with codewords of C} consistently
sorted, the jth codeword of C; is eventually constant when ¢
grows, and equal to the jth codeword of C'. A corresponding
convergence argument on the sequence of average code lengths
then establishes the optimality of C'.

This method was successfully applied to characterize infinite
optimal codes in [2] and [3]. While the technique is straight-
forward once appropriate reduced sources are defined, the dif-
ficulty in each case is to guess the structure of these sources. In
a sense, this is a self-bootstrapping procedure, where one needs
to guess the structure of the codes sought, and use that struc-
ture to define the reduced sources, which, in turn, serve to prove
that the guess was correct. We will apply the Gallager—Van
Voorhis method to prove optimality of codes for certain fam-
ilies of TDGDs in Sections IV and V. In each case, we will
emphasize the definition and structure of the reduced sources,
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and show that they are compatible with the Huffman procedure.
We will omit the discussion on convergence, and the formal in-
duction proofs, since the arguments are essentially the same as
those in [2] and [3].

III. PARAMETER SINGULARITY OF OPTIMAL
CODES FOR TDGDs

In the case of 1-D geometric distributions, the unit interval
(0, 1) is partitioned into an infinite sequence of semiopen inter-
vals (gr—1,qx], k¥ > 1, such that the Golomb code G is op-
timal for all values of the distribution parameter ¢ in (gx 1, qx].
Specifically, for £ > 0, gi is the (unique) nonnegative root of
the equation ¢* + ¢**' — 1 = 0 [2]. Thus, we have ¢y = 0,
g1 = (V5 — 1)/2 = 0.618, g2 ~ 0.755, etc. A similar prop-
erty holds in the case of two-sided geometric distributions [3],
where the 2-D parameter space is partitioned into a countable
sequence of patches such that all the distributions with param-
eter values in a given patch admit the same optimal code. In
this section, we prove that, in sharp contrast to these examples,
optimal codes for TDGDs are parameter singular, in the sense
that a code that is optimal for a certain value of the parameter ¢
cannot be optimal for any other value of g. More formally, we
present the following result.

Theorem I: Letq and ¢; be real numbers in the interval (0, 1),
with ¢ # ¢1, and let 7, be an optimal tree for TDGD(g). Then,
7, is not optimal for TDGD(q1).

Remark: Tt follows from Theorem 1 that any set containing
an optimal code for each distribution TDGD(g), for all values
of ¢, must be uncountable. This implies, in turn, that most op-
timal codes for TDGDs do not have finite descriptions, in sharp
contrast with the 1-D case. From an algorithmic point of view,
then, the key question is for what “interesting”countable sets of
values of g a full characterization of optimal codes is possible. In
a theoretical sense, perhaps the ultimate such set would be that
of all values of ¢ which have finite descriptions (more formally,
the set of computable values of ¢ relative to some universal
Turing machine; see, e.g., [14]). For this set, the goal would be
to obtain a general procedure which, given a finite description
of g, and a pair (i, j), produces the corresponding codeword in
an optimal code for TDGD(¢). A somewhat less ambitious the-
oretical goal, although probably not less valuable from a prac-
tical point of view, would be to characterize optimal codes for
a dense countable set of values of ¢, e.g., all rational values of
q, or all values of ¢ such that log ¢ is rational. These compre-
hensive characterizations appear quite challenging, and remain
open problems. In Sections IV and V, we characterize optimal
codes for a “smaller” infinite countable set of TDGDs, namely,
the set of distributions TDGD(g) such that — log ¢ is either a
positive integer or the inverse of one. It will turn out, as will be
shown in Section VI, that this set provides good coverage of the
interval 0 < g < 1, in the sense that, given an arbitrary value
¢’ in the interval, encoding TDGD(q’) with the best available
code from the characterized set results in relatively low added
redundancy, and yields the expected redundancy gains over op-
timal symbol-by-symbol encoding with Golomb codes.

We will prove Theorem 1 through a series of lemmas, which
will shed more light on the structure of optimal trees for TDGDs.
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For simplicity, we assume throughout that a fixed optimal tree
1, is given (for a given value of ¢).

Lemma 1: Leaves with a given signature s are found in at
most two consecutive levels of 7.

Proof: Let dy and d; denote, respectively, the minimum
and maximum depths of a leaf with signature s in 7,. Assume,
contrary to the claim of the lemma, that d; > dy + 1. We trans-
form 7, into a tree 7, as follows. Pick a leaf with signature s at
level dy, and one at level d; . Place both signatures s as children
of the leaf at level dy, which becomes an internal node. Pick any
signature s’ from a level strictly deeper than dy, and move it to
the vacant leaf at level d; . Tracking changes in the code lengths
corresponding to the affected signatures, and their effect on the
cost, we have

Lo(T)) = Ly(Ty) + ¢°(do —dr +2) =" 6 (©)
where ¢ is a positive integer. By our assumption, the quantity
multiplying ¢* in (3) is nonpositive, and we have £,(7;) <
L4(7;), contradicting the optimality of 7. Therefore, we must
have d; < dg + 1. [ |

A gap in a tree T' is a nonempty set of consecutive levels
containing only internal nodes of 7', such that both the level
immediately above the set (assuming the set does not include
level 0) and the level immediately below it contain at least one
leaf each. The corresponding gap size is defined as the number
of levels in the gap. It follows immediately from Lemma 1 that
in an optimal tree, if the largest signature above a gap is s, then
the smallest signature below the gap is s + 1.

Lemma 2: Letk = 1+ [logq~1]. Then, for all sufficiently
large s, the size ¢ of any gap between leaves of signature s and
leaves of signature s + 1 in 7, satisfies g < k — 1.

Proof: We consider the cases ¢ > 3,¢ = 3,andq < %
separately.

Case ¢ > % In this case, we have £ = 1, and the claim
of the lemma means that there can be no gaps in the tree from a
certain level on. Assume that there is a gap between level d with
signatures s, and level d’ with signatures s + 1, d’ — d > 2. By
Lemma 1, all signatures s + 1 are either in level d' or in level
d’ 4 1. Without loss of generality, we can assume that there is a
subtree of 7, of height at most two, rooted at a node v of depth
d’" —1 > d+ 1, and containing at least two leaves of signature
s + 1. Hence, the weight of the subtree satisfies

w(v) > 2¢°T > ¢°

and switching a leaf s on level d with node v on level d’ — 1 de-
creases the cost of 7, in contradiction with its optimality (when
switching nodes, we carry also any subtrees rooted at them).
Therefore, there can be no gap between the level containing sig-
natures s and s + 1, as claimed. Notice that this holds for all
values of s, regardless of level.

Case ¢ = %: In this case, the TDGD is dyadic, the optimal
profile is uniquely determined, and it has no gaps (the optimal
profile is that of G1 - G1).

Case g < %: Assume that s > 2% — 2, and that there is a gap
of size g between signatures s at level d, and signatures s + 1
at level d 4+ g + 1. Signatures s + 1 may also be found at level
d + g + 2. Without loss of generality, and by our assumption on



BASSINO et al.: OPTIMAL PREFIX CODES FOR PAIRS OF GEOMETRICALLY DISTRIBUTED RANDOM VARIABLES

s, we can assume that there is a subtree of 7, rooted at a node
v atlevel d + g + 1 — k, and containing at least 2* leaves with
signature s + 1, including some at level d+ g+ 1. Thus, we have

w(v) > 28¢* T > ¢ = w(s)

the second inequality following from the definition of k. There-
fore, we must have d+g+1—k < d, orequivalently, g < k—1,
for otherwise exchanging v and s would decrease the cost, con-
tradicting the optimality of 7. |

Next, we bound the rate of change of signature magnitudes as
a function of depth in an optimal tree. Together with the bound
on gap sizes in Lemma 2, this will lead to the proof of Theorem
1. It follows from Lemma 1 that for every signature s > 0, there
is a level of 7, containing at least one half of the s + 1 leaves
with signature s. We denote the depth of this level by L(s) (with
some fixed policy for ties), dependence on 7, being understood
from the context.

Lemma 3: Let s be a signature, and £ > 2 a positive integer
such that s > 272 — 1, and such that L(s') = L(s) + ¢ for
some signature s’ > s. Then, for 7, we have

{—2 <¥_s< {41 .
logg=1! logg—!

Proof: Since s’ > s > 272 — 1 > 271 — 1, by the
definition of L ('), there are more than 22 leaves with signa-
ture s” at level L(s"). We perform the following transformation,
depicted in Fig. 1(a), on the tree 7, yielding a modified tree
7. Choose a leaf with signature s at level L(s), and graft to
it a tree with a left subtree consisting of a leaf with signature s
(“moved” from the root of the subtree), and a right subtree that
is a balanced tree of height ¢/ — 2 with 2¢~2 leaves of signa-
ture s”. These signatures come from 22 leaves at level L(s')
of 7,, which are removed. It is easy to verify that the modified
tree 7;’ defines a valid, albeit incomplete, code for the alphabet
of a TDGD. Next, we estimate the change A in cost due to this
transformation. We have

“4)

A=LT) - L(T) = q° =2 ¢

The term ¢° is due to the increase, by one, in the code length
for the signature s, which causes an increase in cost, while the
term 72“2(15’ is due to the decrease in code length for 22
signatures s’, which produces a decrease in cost. Since 7, is
optimal, we must have A > 0, namely

0 S qs _ 2272(15/ _ qs (1 _ 2£72qslfs)

and thus, 272¢¥ =* < 1, from which the lower bound in (4)
follows. (Note: clearly, the condition s > 2¢-1 _ 1 would have
sufficed to prove the lower bound; the stricter condition of the
lemma will be required for the upper bound, and was adopted
here for uniformity.)

To prove the upper bound, we apply a different modification
to 7,. Here, we locate 2°*1 signatures s’ at level L(s'), and
assume, without loss of generality, that these signatures are the
leaves of a balanced tree of height £ + 1, rooted at a node v of
depth I(s)—1. The availability of the required number of leaves
at level L(s") is guaranteed by the conditions of the lemma. We
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L(s) ..

Fig. 1. Tree transformations.

then exchange v with a leaf of signature s at level L(s). The
situation, after the transformation, is depicted in Fig. 1(b). The
resulting change in cost is computed as follows:

A = [,q(’];/) _ ﬁq(/];) _ _qs + 24_1_1(]5/'

As earlier, we must have A > 0, from which the upper bound
follows. ]
We are now ready to prove Theorem 1.

Proofof Theorem 1: We assume, without loss of generality,
that g3 > ¢, and we write g3 = q(1 +¢),0 < e < ¢! — 1.
In 7,, choose a sufficiently large signature s (the meaning of
“sufficiently large” will be specified in the sequel), and a node
of signature s at level L(s). Let s > s be a signature such

that ééL(s’ ) — L(s) > 2. We apply the transformation in
Fig. 1(a) to 7, yielding a modified tree 7. We claim that when
weights are taken with respect to TDGD{(q, ), and with an ap-
propriate choice of the parameter Z, ’1:1’ will have strictly lower
cost than 7. Therefore, 7, is not optimal for TDGD(g1). To
prove the claim, we compare the costs of 7, and 7, with respect
to TDGD(¢1 ). Reasoning as in the proof of the lower bound in
Lemma 3, we write

A= ‘Ctll (7:1,> - qu (7:1) = qi - 2E72qi’
(4L
=g (1-272] ) < (1 — 202 ) 5)

where the last inequality follows from the upper bound in
Lemma 3. It follows from (5) that we can make A negative if

+1
——logq1 > 0.

-2+
log q

Writing ¢, in terms of ¢ and £, and after some algebraic manip-
ulations, this condition is equivalent to
o logg*
£>310g(1+€) 1. (6)
Hence, choosing a large enough value of Z, we get A < 0,
and we conclude that the tree 7, is not optimal for TDGD(¢1),
subject to an appropriate choice of s, which we discuss next.
The foregoing argument relies strongly on Lemma 3. We re-
call that in order for this lemma to hold, ¢ and the signature s
must satisfy the condition s > 2+2 — 1. Now, it could happen
that, after choosing £ according to (6) and then s according to the
condition of Lemma 3, the level L(s) + ¢ does not contain 22
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signatures s" as required (e.g., when the level is part of a gap).
This would force us to increase £, which could then make s vio-
late the condition of the lemma. We would then need to increase
5, and recheck £, in a potentially vicious circle. The bound on
gap sizes of Lemma 2 allows us to avoid this trap. The bound
in the lemma depends only on ¢, and thus, for a given TDGD,
it is a constant, say g,. Thus, first, we choose a value £, satis-
fying the constraint on £ in (6). Then, we choose s > 2f0+9a+4,
Now, we try £ = £y, by + 1, g+ 2, . . ., in succession, and check
whether level L{s) + ¢ contains enough of the required signa-
tures. By Lemmas 1 and 2, an appropriate level L(s’) will be
found for some £ < ¢y + g, + 2. For such a value of ¢, we
have 2¢+2 — 1 < 2f0F9+% _ 1 < 4, satisfying the condition of
Lemma 3. This condition, in turn, guarantees also that there are
at least 2¢ 2 signatures s’ at L(s'), as required. |

IV. OPTIMAL CODES FOR TDGDS WITH ¢ = 2~ /¥

It follows from the results of Section III that it is infeasible
to provide a compact description of optimal codes for TDGDs
covering all values of the parameter q, as can be done with 1-D
geometric distributions [1], [2] or their two-sided variants [3].
Instead, we describe optimal prefix codes for a discrete sequence
of values of ¢, which provide good coverage of the parameter
range. In this section, we study optimal codes for TDGDs with
parameters ¢ = 2-1/% for integers £ > 1,1.e.,q > %, while
in Section V, we consider parameters of the form ¢ = 2%,
k > 1, covering the range ¢ < % (the two parameter sequences
coincideatk = 1,9 = %, which we choose to assign to the case
covered in this section).

A. Initial Characterization of Optimal Codes for q = 2~ '/*

The following theorem characterizes optimal codes for
TDGDs of parameter ¢ = 2~/ k > 1, in terms of unary
codes and Huffman codes for certain finite distributions. In
Section IV-C, we further refine the characterization by pro-
viding explicit descriptions of these Huffman codes.

Theorem 2: An optimal prefix code C}, for TDGD(q), with
q=2"Y% k> 1,is given by

Cili, j) = Te(i modk, jmod k) - G1(| £]) - G1([£])

where (7 is the unary code, and T}, referred to as the fop code,
is an optimal code for the finite source defined by the following
symbol set and respective weights:

w(i,j)=q¢*. ()

Remarks:

1) Theorem 2 can readily be generalized to blocks of d > 2
symbols. For simplicity, we present the proof for d = 2.

2) Notice that Cy (%, j) concatenates the “unary” parts of the
codewords for ¢ and j in a Golomb code of order £ (as if
encoding ¢ and j separately), but encodes the “binary” part
jointly by means of 7}, which, in general, does not yield
the concatenation of the respective “binary” parts Q%)
and Qi(j). However, when k = 1 and k = 2, C}, is
equivalent to the full concatenation Gy, - G.. When k = 1,
the code T} is void, and C; = Gy - 1. The parameter
in this case is ¢ = %, the geometric distribution is dyadic,
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Fig. 2. Graphical representations for trees with associated weights.

q727:12

Fig. 3. Tree ¢=>7}.

and the code redundancy is zero. When £ = 2, we have
q = 1/+/2 and the finite source Ay, has four symbols with
respective weights {1, v/2/2, v/2/2, 1/2}. This source is
quasi-uniform, and therefore, it admits ()4 as an optimal
tree. This is a balanced tree of depth two, which can also
be written as Q4 = Q5 - (J2. Thus, we have Cy = G4 -
(G». Later on in the section, in Corollary 1, we will show
that this situation will not repeat for larger values of %: the
“symbol-by-symbol” code G, - Gy, is strictly suboptimal

for TDGD(27'/*) when k > 2.
In deriving the proof of Theorem 2 and in subsequent sec-
tions, we shall make use of the following notations to describe
and operate on some infinite trees with weights associated with

their leaves. We denote by the trivial tree consisting of a
single node (leaf) of weight ». Given a tree T’ and a scalar g, g7’
denotes the tree 1" with all its weights multiplied by g. Given
trees T1 and T5, the graphic notation in Fig. 2(a) represents a tree
T consisting of a root node with 7} as its left subtree and 75 as
its right subtree, each contributing its respective leaf weights.
The multiset of weights associated with 7' is the union of the
multisets associated with 77 and 7. We will also use the no-
tation [T7  75] to represent the forest consisting of the sepa-
rate trees 11 and 75, which has the same associated multiset
of weights as the tree T of Fig. 2(a), but a different underlying
graph. We denote by ’Tgl the tree of a unary code whose leaf
at each depth ¢ > 1 has weight ¢*, and by 7* the structure in
Fig. 2(b). It is readily verified that ’ng corresponds to the con-
catenation of two unary codes, with each of the z — 1 leaves at
depth ¢ > 2 of ’];2 carrying weight g*. In particular, as shown
in Fig. 3, the tree q’QIIQ corresponds to the optimal tree for
the dyadic TDGD with ¢ = %, where each leaf is weighted ac-
cording to the signature of the symbol it encodes.

The following lemma follows directly from the foregoing
definitions, applying elementary symbolic manipulations on
geometric sums.

Lemma 4: For any real numtz)er g,0 < g < 1, we have
w(T?) = w(T})* = ﬁ) . In particular, if ¢ = 2

we have w(773) = w(7 ;) = 1.

1/k
b
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We rely on this observation in the proof of Theorem 2 below.
In the proof, when defining virtual symbols, we further overload
notation and regard trees with associated weights, such as ¢" 7%,
also as multisets of signatures, with a signature s for each leaf
of the tree with weight g°.

Proof of Theorem 2: We use the Gallager—Van Voorhis
construction [2]. For s > 0, define the reduced source

W, =H,UF,
where
Ho={ie A|i<s}

(signatures in H, occur with the same multiplicity as in f\), and

k-1
s+ig2 stigl ;
Fo= el o775 s+ i)
i=0 ~—~— stit+1
ktimes s+k+it+l o0 0

times

The multisets (of signatures) ¢**'7 } and ¢**'77 play the
role of virtual symbols in the reduced sources, as discussed
in Section II-C (we omit the qualifier “virtual” in the sequel).
It is readily verified that all the weights of symbols in F, are
smaller than the weights of signatures in H,. Since ¢ = 2 /¥,
by Lemma 4, we have w(¢* "7 %) = w(g*tT}) = w(s +4).
Thus, we can apply steps of the Huffman procedure to F, in
such a way that the s 4+ ¢ + 1 signatures s + ¢ are merged with
s+1i+1 symbols q‘““’Z;lk ,resulting in s+ + 1 trees q‘““‘kquk .
The remaining & symbols q"“”ﬂ;l,c can be merged with the &
symbols qS‘Li’];zk , resulting in & trees qu”“’];i when ¢ ranges
from k& — 1 down to 0. After this sequence of Huffman mergers,
W; is transformed into W;_, as long as s > k. Starting from
s = tk for some ¢ > 0, the procedure eventually leads to Wj.
Formally, our reduced source W, ¢ > 0, corresponds to S
in our description of the Gallager—Van Voorhis construction in
Section II-C. Thus, the iteration leads to Sy, as called for in
the construction. It is readily verified that this source admits
an additional sequence of Huffman mergers, as described
previously, leading (with a slight abuse of notation) to

k—1
i—kT2 i—kl
Soa=J{d T ¢ T
i=0 —~V— N\ —
ok 141
times times

Continuing with the Huffman procedure, each symbol ¢'~* 7}
in §_; can be merged with a symbol ¢' *7 7%, further leading,
by the definition of 7;]2 (see Fig. 2(b)), to a reduced source

S :{quc,];zk, (172k+17;2k7 q—2k+27:12k7 o
——
1 2 3
time times times

—k—1~2 —kg2 —372 —272
ey g ,]:11;7(1 7:1)<,7...7q 7:11<;7(] ,Z;k}.
————— N — —— S——
k k—1 2 1

times times

s’

We now take a common “factor” ¢ **7 % from each symbol of
S*. By the discussion of Figs. 2 and 3, this factor corresponds
to a copy of G - G, with weights that get multiplied by ¢*
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every time the depth increases by 1. After the common factor
is taken out, the source $* becomes the source Ag of (7), to
which the Huffman procedure needs to be applied to complete
the code construction. Thus, the code described in the theorem
is optimal. ]

To make the result of Theorem 2 completely explicit, it re-
mains to characterize an optimal prefix code for the finite source
Ay, of (7). The following lemma presents some basic properties
of /lk and its optimal trees. Recall the definitions of «-unifor-
mity and fringe thickness from Section I1.

Lemma 5: The source flk is 4-uniform, and it has an optimal
tree 1" of fringe thickness fr < 2.

Proof: 1t follows from (7) and the relation ¢* = % that the
maximal ratio between weights of symbols in Ay, is ¢ 2512 =
4¢% < 4.Hence, Ay, is 4-uniform. The claim on the optimal tree
holds trivially for & < 2, in which case the optimal tree for ,Ztk
is uniform. To prove the claim for & > 2, consider the multiset
Ai C A, consisting of the lightest 2[ k(kﬂjl)] signatures in As,
ie.,

Ar =K U {kk,....kk+1,... . k+1,...
i —_— — ——
k—2 times

ooy 2k—3,2k—3,2k—2}
N————— N~

k—1 times

2 times 1 time

where K = {k — 1} if s mod 4 € {2,3}, or K is empty other-
wise. The sum of the two smallest weights of signatures in A},
satisfies

w2k —2) + w2k —3)=¢* 2+ 2P =21+ ¢
1
5(1 +¢ "2 > wk - 2).

The sum of the two largest weights in fl*, on the other hand,
is either ¢° if kmod 4 € {0,1}, or (1 + ¢ ') otherwise.
Therefore, if the Huffman procedure is applied to Ay, every
pair of consecutive elements of fl}f will be merged, without in-
volving a previously merged pair. The ratio of the largest to
the smallest weight remaining after these mergers is at most
5(1+¢71)/¢" ! = ¢+ 1 < 2. Hence, the resulting source is
quasi-uniform and has a quasi-uniform optimal tree. Therefore,
completing the Huffman procedure for Ay, results in an optimal
tree of fringe thickness at most two. ]

To complete the explicit description of an optimal tree for
Ak, we will rely on a characterization of trees " with fr < 2
that are optimal for 4-uniform sources.5 This characterization is
presented next.

B. Optimal Trees With fr < 2 for 4-Uniform Sources

To proceed as directly as possible to the construction of an
optimal tree for Ay, we defer all the proofs of results in this
section to Appendix A. We start by characterizing all the pos-
sible profiles for a tree 7" with IV leaves, and fr < 2. Let T be
such a tree, let m = [log N, and denote by n, the number of
leaves at depth £ in 7.

SNotice that not every 4-uniform source admits an optimal tree with fr < 2

(although the ones of interest in this section do). For example, an optimal tree
for the 4-uniform source with probabilities ﬁ(él, 3,1.1,1) must have f > 2.
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Lemma 6: The profile of T satisfies ny = 0 for £ < m — 2
and £ > m + 1, and either n,,_2 = 0 or 1,41 = 0 (or both,
when fr < 1).

It follows from Lemma 6 that 71" is fully characterized by the
quadruple (7.2, Rn—1, N, Bmy1 ), With either n,, o = 0
or n,,+1 = 0. We say T' is long if n,,,_o = 0, and that T is
short if n,,+1 = 0. Defining M = m — o, where ¢ = 1 if
T is short, or 0 if it is long, a tree with fr < 2 can be char-
acterized more compactly by a triple of nonnegative integers
Nr = (nar-1,70,nar4+1). We will also refer to this triple
as the (compact) profile of T', with the associated parameters
N, m, and ¢ understood from the context. Notice that when
Thm—2 = Nmy1 = 0, T is the quasi-uniform tree ) n, and
(abusing the metaphor), it is considered both long and short (i.e.,
it has representations with both ¢ = 0 and o = 1).

Lemma 7: Let T be a tree with fr < 2. Foro € {0,1} and
M = m — o, define

Cy

) 2N — 2M
=(N - 2M)<7 and ¢, = {7J .

3

Then, T is equivalent to one of the trees 17, . defined by the
profiles

Nz, . = (nar—1, nar, nar41)
:(ﬂf—N+@2N—2M—3q%)
oc€{0.1}, ¢, ¢ <5, (8)
Remarks:

1) Equation (8) characterizes all trees with N leaves and
fr < 2 in terms of the parameters o and c¢. The pa-
rameter ¢ has different ranges dePending on o: we have
N —2m 1 < ¢ < L%J when ¢ = 1, and
0<e< [%J when o = 0. The use of the parameter-
ized quantities M, ¢, and ¢, will allow us to treat the two
ranges in a unified way in most cases. Also, notice that
Ty, and Ty, . represent the same tree, corresponding,
respectively, to interpretations of the quasi-uniform tree
@~ as short or long.

2) The parameter ¢ represents the number of internal (non-
leaf) nodes at level M of T'. An increase of ¢ by one corre-
sponds to moving a pair of sibling leaves previously rooted
at level M — 1 to a new parent at level M (thereby in-
creasing the number of internal nodes at that level by one).
The number of leaves at level M decreases by three, and
the numbers of leaves at levels M — 1 and M + 1 increase
by one and two, respectively.

Consider now a distribution on N symbols, with associated
vector of probabilities (or weights) p = (p1,p2,-. .. 0N ), P1 >
p2 > -+ > pn. Let L, . denote the average code length of T, .
under p (with shorter codewords naturally assigned to larger

weights), and let

DU,(: = L(T,(: - La’,c—la s {()* 1}/ Cy <c S Cer - (9)
It follows from these definitions, and the structure of the profile
(8) (see also Remark 2 above), that for o € {0,1} and ¢, <
¢ < ¢,, we have

(10)

Dy =pN 2ct1 + DN 2c42 — P2M_Nye
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A useful interpretation of (10) follows directly from the profile
(8): for T;; ., D . is the difference between the sum of the two
heaviest weights on level M + 1 and the lightest weight on level
M —1.

Let sg(x) be defined as —1,0, or 1, respectively, for nega-
tive, zero, or positive values of =, and consider the following
sequence (recalling that ¢, = 0):

s= —sg(D1z ), —s8(D1z 1), -- -, —Sg(D1,gl+1);
sg(Do.1), s8(Doy2), -, 58(Doz,)-

Lemma 8: The sequence s is nondecreasing.

The definition of the sequence s induces a total ordering of
the pairs (o, ¢) (and, hence, also of the trees T, ), with pairs
with 0 = 1 ordered by decreasing value of ¢, followed by
pairs with ¢ = 0 in increasing order of ¢. The two subse-
quences “meet” at ¢, which defines the same tree regardless
of the value of o (in the pairs ordering, we take (1, ¢, ) as iden-
tical to (0, ¢y) = (0,0)). We denote this total order by <. Re-
calling that the quantities [), . are differences in average code
length between consecutive codes in this ordering, Lemma §
tells us that, as we scan the codes in order, we will generally see
the average code length decrease monotonically, reach a min-
imum, and then (possibly after staying at the minimum for some
number of trees) increase monotonically. In the following the-
orem, we formalize this observation, and identify the trees 7, .
that are optimal for p.

Theorem 3: Let p be a 4-uniform distribution such that p
has an optimal tree 7' with fr < 2. Define pairs (o4, ¢, ) and
(o™, c*) as follows:

(11)

(U*,C*) - (1v61)
(o%, ) =(0,gy)
Otherwise, if Diz < 0, let (o_,c_) be such that

(—1)"Isg(D,_ . ) is the last negative entry in s, and
define

if Dyz >0
if Doz, < 0.

(04, ) =(0_, c_ — o_).

If Doz, > 0, let (o, c,) be such that (—1)(*)sg(D,, ., ) is
the first positive entry in s, and define

(0%, c") =0y, ¢, =1+ ;).

Then, all trees 7, . with (04, ¢) = (0,¢) = (g%, ¢*) are op-
timal for p.

Notice that, by Lemma 8, the range (o.,¢.) = (0,¢) =
(o*,c*}) is well defined and never empty, consistently with the
assumptions of the theorem and with Lemma 7. The example in
Table I lists all the trees T}, . with fr < 2 for N = 19, as char-
acterized in Lemma 7, and shows how Theorem 3 is used to find
optimal trees for a given 4-uniform distribution on 19 symbols.

C. Top Code

By Lemma 5, Theorem 3 applies to the source Ay, defined in
(7). We will apply the theorem to identify parameters (o, cx )
that yield an optimal tree 7, ., for flk.

For the remainder of the section, we take N = k2, and
let p = (p1,p2,...,pr2) denote the vector of (unnormalized)
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TABLE 1
FINDING OPTIMAL TREES T,, . FORN = 19,p = 41—9(4,4,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,1,1) (OPTIMAL TREE PARAMETERS EMPHASIZED IN BOLDFACE)
1,3) =

(0,¢) (1,7) (1,6) (1,5) (1,4) E0,0% (0,1) (0,2)
(mm—1,nm,nm1) | (4,1,14)  (3,4,12)  (2,7,10) (1,10,8) (13,6,0) (14,3,2) (15,0,4)

49 Lo 214 211 208 206 206 206 208

49 - Dy e 3 3 2 0 0 2

o NGNS W AT (@) (oien)

symbol weights in .4, in nonincreasing order. Thus, we have
p [’ 17 AR qJ7 qj7 e qj7 e q2k—37 q2k—37 q2k—2)'

= (¢%d"q ,
Here, ¢7 isrepeated j+1 times for0 < j < k—1,and2k—1—j
times for k < 57 < 2k — 2. The following lemma, which de-
rives immediately from this structure, establishes the relation
between indices and weights in p.

Lemma 9: For 0 < i < k(k +1)/2, we have p;11 = ¢,
where j is the unique integer in the range 0 < j < k — 1
satisfying

+r

7=

a4 1
J(‘I‘;) for some r, 0<r <j. (12)

_ L 2k—2—j

For 0 < ¢ < k(k + 1)/2, we have pgz q
$g*~277" where j is the unique integer in the range 0 < j

k — 1 satisfying

i 7'+ 1)
’ 2

We define some auxiliary quantities that will be useful in the
sequel. Let m = [log k%], Q = k% — [k(k — 1)/4], and M’
[log, (], with dependence on k understood from the context.
We assume that & > 2, since the optimal codes for £ = 1 and
k = 2 have already been described in Section I'V-A. It is readily
verified that we must have either M’ = m or M’ = m — 1.
The next lemma shows that the relation between M’ and m
determines the parameter o of the optimal trees 7} . for flk.

Lemma 10: 1If M’ = m, then trees T, . that are optimal for
Ay, are long (o = 0); otherwise, they are short (o = 1).

Proof: Assume M’ = m. Then, we can write

<

/

+ 7 for some r’, 0 <¢' <j'.

(13)

gm _ 21’\1/ < 21+10gQ = 2Q
— 24— 2[k(h— 1)/4] £ 27 — k(k— /2. (14)

$0 2™ — k* < k? — k(k —1)/2.1f¢; + 1 > €, then all trees
T, . in (8) are long. Otherwise, Dl,gl—l—l is well defined, and we
have

—D17£1+1 - _Dl’k272771,71+1
=p1— (P k2 1+ Pom _ox)

< p1—2pp2 gr-1y2 = p1 — 24" "

=1-¢'<0
(15)

where the first and second equalities follow from the definition
of ¢, and from (10), the first inequality from the ordering of the
weights and from (14), the third equality from Lemma 9, and the
last equality from the relation ¢* % By Lemma 8, we con-
clude that optimal trees for Ay are long in this case. Similarly,
when M’ = m — 1, we have

2™ >20Q > 2k* — k(k —1)/2 -2 (16)

$02™ — k2 +1 > k? —k(k—1)/2 =1, and pgm_p24; <
Pr2—k(h—1)/2—1 = ¢F = 2. 1f¢ = ¢, = 0, then all trees 7T, .
in (8) are short. Otherwise, similarly to (15), we have

e 1_q7 1
5=
which implies that optimal trees are short in this case. ]

It follows from Lemma 10 that we can take m — M’ as the
parameter o for all trees 7, .. that are optimal for p. Notice that
M’ is analogous to the parameter M defined in Lemma 7, but
slightly stricter, in that, in cases where a quasi-uniform tree is
optimal, m — M’ will assume a definite value in {0,1} (which
will vary with £), while, in principle, a representation with either
value of ¢ is available. This very slight loss of generality is of
no consequence to our derivations, and, in the sequel, we will
identify M with M’, i.e., we will take M = [log Q]. It also
follows from Lemma 10 that when applying Theorem 3 to find
optimal trees for p, we only need to focus on one of the two
segments (corresponding to ¢ = 0 or 0 = 1) that comprise the
sequence s in (11), the choice being determined by the value of
k. This will simplify the application of the theorem.

Lemmas 9 and 10, together with Theorem 3, suggest a clear
way, at least in principle, for finding an optimal tree 7, .. for Ap.
The parameter o is determined immediately as ¢ = m — M (re-
calling that m and M are determined by %). Now, recalling the
expression for D, . in (10), we observe that as ¢ increases, the
weights pr2 _9.41 and pg2 .49 also increase, while pou g2 .,
which gets subtracted, decreases. Thus, since, by Theorem 3, an
optimal value of ¢ occurs when D, . changes sign, we need to
search for the value of ¢ for which the increasing sum of the first
two terms “crosses” the value of the decreasing third term. This
can be done, at least roughly, by using explicit weight values
from Lemma 9 with ¢’ € {2¢—1, 2c— 2} andi = 2™ — k* + ¢,
and solving a quadratic equation, say, for the parameter j (the
parameter j° will be tied to j by the constraint D, . & 0). A finer
adjustment of the solution is achieved with the parameters r and
r’, observing that a change of sign of D, .. can only occur near
locations where the weights in p change (i.e., “jumps” in either j
or 7'), which occur at intervals of length up to k. At the “jump”
locations, either r or 7' must be close to zero. While there is
no conceptual difficulty in these steps, the actual computations
are somewhat involved, due to various integer constraints and
border cases. Theorem 4, presented next, takes these complexi-
ties into account and characterizes, explicitly in terms of %, the
parameter pair (o, ¢x) of an optimal code T, ., for A

Theorem 4: Letq = 27Y% Q = k? — [k(k — 1)/4],m =
[log k%], and M = [log Q]. Define the function

k—xz-2)k—2z-1)
17)

Dot =pgea+prz —Dam g2y >2q

Az) =28 = 2M T L p(z +1) -
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TABLE II N
OPTIMAL CODE PARAMETERS AND PROFILES FOR A, 3 < k < 10

g

a

— LN ND = = OF

(nar—1,m0, M 41)
(0,4,0)
(0,7,2)
(1,13,2)
(7,18,0)

(1,25, 10)
(15,34,0)
(5,49, 10)
(0,47, 34)
(29,69,2)

SO 001NN B W FY

\IO\O\O\UIU!#L»JI\J%
NO NN = WO O,

O~ OO~ OO~ O

—ONOO—~, OO O[S

—_

Let 2 denote the largest real root of A(x), and let £ = |zq].
Set

—A()+1 i ‘
. (6 [2292]), i a <2 .

(€+1,0), otherwise.

Then, the tree T}, ., as defined by the profile (8) witho = o3, =
m — M and

i +1
c:ck:k2—2M+'7(']+ )-l-r

. (19)

is optimal for /lk. Furthermore, ¢, is the smallest value of ¢ for
any optimal tree T, . for /lk.,.

The proof of Theorem 4 is presented in Appendix B. In the
theorem (and its proof), we have chosen to identify the optimal
tree T,,, . with the smallest possible value of c. It can readily
be verified that this choice minimizes the variance of the code
length among all optimal trees T,,, ... With only minor changes
in the construction and proof, one could also identify the largest
value of ¢ for an optimal tree, and thus, the full range of values of
¢ yielding optimal trees T}, .. For conciseness, we have omitted
this extension of the proof.

Examples of the application of Theorem 4 are presented in
Table II, which lists the parameters M, j, r, oy, ¢, and the
profile of the optimal tree 7, defined by the theorem, for
3 < k<10

The tools derived in the proof of Theorem 4 also yield the fol-
lowing result, a proof of which is also presented in Appendix B.

Corollary 1: Letk > 2 and q = 2-1/% Then, G} - G is not
optimal for TDGD(q).

k; Ck

D. Average Code Length

The following corollary gives explicit formulas for the av-
erage code length of the codes C'. characterized in Theorems 2
and 4. The proof is deferred to Appendix C.

Corollary 2: Let M, A(x), j, and r be as defined in Theorem
4. Then, the average code length Zq(Ck.) for the code €, under
TDGD(q), for arbitrary q, is given by

— ¢V (q)

Eq(Ck) =M+1+ m (20)

where

V() =1- ¢ + (1= (¢ (k=5 = 1) +))

+ (- (¢ 2r+a0) - 7).
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When ¢ = 27V* we have

L (Ch)=M+142¢V*(q) 1)

with

Vi(@)=1+(1-g)(gk+(2-q)j) +(1—q)* (1+A (5)).

V. OPTIMAL CODES FOR TDGDS WITH g = 2~

A. Description of the Codes

Assume ¢ = 27% for some integer k > 1. We reuse the
notation U,,, = Qo= for a uniform tree of depth m, assuming,
additionally, that its 2"" leaves have weight one. The infinite
tree (and associated multiset of leaf weights) V. is recursively
defined as follows. Start from U4, and attach to its leftmost leaf
a copy of ¢Vi. Thus, V. has 2% — 1 leaves of weight ¢* at depth
(s+1)k forall s > 0, and no other leaves. The related tree V,_ is
defined by starting from U1, and attaching to its leftmost leaf
a copy of qVi. Thus, V,~ has 27! — 1 leaves of weight ¢" at
depth k — 1, and 2% — 1 leaves of weight ¢* at depth (s + 1)k — 1
for all s > 0. The trees V}, and V, are illustrated in Fig. 4.

We describe a sequence of binary trees (and codes) C_y,
which, later in the section, will be shown to be optimal for
TDGDs with ¢ = 27%, k > 1. We describe the trees by layers.
A layer L; is a collection of consecutive levels of the tree, con-
taining all the leaves with signature s. The structure of the layers
and how L, unfolds into L, ; for all s are presented next, pro-
viding a full description of the trees C'_.

Assume k& > 1 is fixed. We distinguish two main cases for
the structure of L, which depend on the value of s, as specified
next. In the description of the layers, each tree structure is a vir-
tual symbol. We will refer to both original and virtual symbols
simply as symbols.

Case1)0 < s < 2F-1 _2:

Write s =20+ j — 1 with0 <4< k-2, 0<j <2 —1.
Layer L, consists of nodes in two levels, arranged as follows:

oo AA A

| W
2 —j—1 times RS
—_—

7 times

1 (22)

(recall that the factor ¢° multiplies all the Whts of objects

inside the brackets so that the leaves denoted L~ in (22) indeed
correspond to signatures s).

The symbol R, represents a tree containing all the signatures
strictly greater than s, scaled by ¢~°. Layer L, emerges from
constructing a quasi-uniform tree for s + 2 symbols (s + 1 sig-
natures s, and the symbol R ,), attached to R, of the previous
layer if s > 0, or to the root of the tree if s = 0. We have
s54+2=24+1474,0<j <2 —1,so the quasi-uniform tree
has 2¢ — j — 1 leaves at depth ¢, and 25 + 2 leaves at level i + 1,
as shown in (22).

Case2) s > 2F~1 — 1:

Write

s=2M1 142144, £>0, 0<j<2P—1. (23)
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Fig. 4. Trees V; and V, .

There are five types of layers in this case, as described below.
The symbol R in each case represents a tree containing all the
signatures strictly greater than s that are not contained in other
virtual symbols in L, suitably scaled by ¢~°. Also, it will be
convenient to use the notation M as shorthand for the sequence

—_———

2% _1 times

24)

(M still counts as 2¥ symbols in Ly).
) 0<j<2671 3 (fork > 2):

oo LD A A-../\].
gk=1_;_ 1t1me€7€.

£ times

meHJA A A A]
£times  IUr-1R

_,_/

2511 times

i) 2k

q’~[M...M DT S /\].
e N—_——
£ times 3.9k—1 _9_ ;¢ cqUp 1R,

J times

j—2k71+1 times

T_1<j<2k 4

27)
iv) j=2F-3
f{&Léﬁgﬂlnl A A A].@&

£times  2%—141 times ¢V, Rs
N—_——

2F=1_2 times

v j=2F-2

[M Mmoo LI A A ;\]
o w1 0[] ([

281 _1 times

£ times ok

29)

2385

Case 1 Case 2
21(:—1_1 2k—1_2 2k—1_2
£ (+1

Fig. 5. Layer transitions in C_;, for & > 2. The expressions above the self-
loops indicate the number of iterations on the given layer type before the tran-
sition to the next type.

The last layer from Case 1 contains all the signatures s’ =
2F=1 _ 2. All signatures s > s’ are contained in R,/. In partic-
ular, there are 2% ! signatures s’+1 = 2¥ "1 —1. Assume k > 2.
A quasi-uniform tree with 2¥ =1 +1 leaves is constructed, rooted
at R, This tree has 2# 1 —1 leaves labeled s’ 4+ 1 at depth k—1
from its root, and two leaves at depth %, one of which is labeled
s’ + 1, and one that serves as the root for R4 ;1. This is consis-
tent with the structure of the first layer in Case 2 shown in (25),
withs = s’ +1,¢ = 0, and j = 0. From that layer on, layers of
types (i)—(v) above unfold following the cyclic pattern shown in
Fig. 5. Layers of types (i) and (iii) are repeated 21 — 2 times
each in the cycle, which is closed by a transition from a layer of
type (v) back to one of type (i), corresponding to an increment
of the value of ¢ by one.

When k& = 2, layers of type (i) or (iii) are not used. In this
case, the only layer in Case 1 contains the signature 0. A uniform
tree Us is constructed, rooted at Rg. One pair of sibling leaves
is assigned to signature 1, while the other pair is assigned to R
and l{;, attaining a configuration of type (ii) in Case 2. From that
point on, the cyclic layer sequence is (ii) — (iv) — (v) — (ii).

The fine details of the various layer transitions, justifying the
structure in Fig. 5, are given in Appendix D. The structure is
also illustrated by the example in Fig. 6, which shows the layers
L, fors < 11 in C_3.

Due to the cyclic nature of the construction, the subtree
Rs, s > 2F71 — 2 s, in general, identical to all subtrees
Rot2s—1ye» # > 0, up to appropriate scaling by q@ Ve,
In the example of Fig. 6, the tree g is identical to the tree
Ra, indicated in the figure as Ro 7. An additional source of
self-similarity is provided by the trees V; and V, ; in Fig. 6,
the subtree labeled ¢'"V; is identical to that labeled ¢° V5, etc.
Overall, although the width of the tree is unbounded (driven by
the £ copies of M in each layer of Case 2), the total number of
distinct subtrees in C'_;, is finite.

The following theorem enumerates the code lengths assigned
to signatures by the codes C'_ .. It follows immediately from the
description of the codes in (22) and (25)—(29).

Theorem 5: Code C_y, k > 1, assigns code lengths A,
or A; + 1 to signatures s according to the expressions for A
and the codeword counts in Tables III and IV, corresponding,
respectively, to the cases 0 < s < 2¥~1 — 2 (Case 1) and
s > 281 _ 1 (Case 2).

We now present some auxiliary results that will be useful in
proving the optimality of the codes C'_. We rely on the fol-
lowing relations, which are readily derived from the definitions
of the respective trees, under the assumption ¢ = 27%:

w(lUy) = 2wlUy—1) = w(Vy) =2w(V, ) =q¢ ' (30)
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Case 1 Level
i=0, j=0 0 1
- :

1 i 1
.Z 1"7 0 ~ 3
i=1, j=1 R(2+7é")\£g2 2%2 g
Case 2 % 3 g
O=0g= & : 8
- % ;
(1) £=0, j= 4 a4 10
12
(i) £=0, j=2 A5 5% s Rs 13
14
GﬁG 6h6 sﬂs 6 15
16
(ii) (=0, j=3 17
, 7ﬁ7 7h7 X7 18
(iii) £=0, j=4 7 19
20
51
(iv) (=0, j=5 E(% E?\é . 2

oo sRs s A8
aVy 23
24
10 9 o9
W =0, j=6 4 V3 |:\f\u ﬁ‘ r 25
- k 9 9R9 9R9 9R9g
ql()M q

111;3 10 10; '}1010{‘ (EIO 10; } 0 1(? 51010 Case 2 ;;
0=l j=0 o

111/\11 11/\11 11/\11

v ey

n]ﬂln :: () (=1, j=1 g‘l)
1111/\11
"M R 32

Fig. 6. Top levels comprising layers L, for s < 11 in the optimal tree
C_3 (g = é). Leaf signatures are noted; dotted lines separate layers L, and
circled nodes represent roots of trees R .. Grayed ovals represent sequences

q*M.

TABLE III
CODE LENGTHS AND CODEWORD COUNTS FOR CODES C'_;, ON SIGNATURES &,
0<s <2k 2

Casel: 0<s<2F1l_-2 s=204+j—-1, 0<i<k-2
As =(s+ )(z+1) 2i+1
Number of codewords (signatures)
Range of j length Ag length As+1
0<j<2 -1 (2°—j-1 2j +1
TABLE IV
CODE LENGTHS AND CODEWORD COUNTS FOR CODES C'_;, ON SIGNATURES
s> 281 1
Case 2: 2 2k=1_1, s=2k-1_14(2k—1)t4j, £>0
As = (s+2)k — 2F
Number of codewords (signatures)
Range of j length Ag length As+1
0<j<2k-1_3 (2kF-1)e+ (2F—1—j-1) | 2+1
j=2k1_2 (2F-1)¢ 2k 2
2k—1_1<j<2k—4 | (2F—1)e+3-2F"1—2—5 | 2j4+2-2F
j=2k-3 (2k—1)¢ 4 2k- 1+1 2k _4
j=2k-2 (2k—1)e42k—1— 2k —1

The next lemma bounds the weight of the symbol R in (22)
and (25)—(29).
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Lemma 11: When s < 2*=1 — 2 (Case 1), we have 0

<
— 2 (Case 2), we have 1 <

w(Rs) < % When s > 2k-1 5
w(Ry) < 1.
Proof- Fors < 2¥=1 — 2 we have
w(Rs) = Z (s" + 1)g*w(s")
s'=s+1
- : (s+1)(1—g)+1
=) (s+r+2)¢™M =" ¢ (31)
;( ) (1-¢)*

The right hand side of (31) increases with s. Setting s = 271 —
2= Z 2, we obtain w(R;) = 1 (1 + 211(1_':3]2)), which satis-
fies the claimed upper bound for ¢ < %. Whens > 28"1—1, R,
contains all the signatures s’ > s (with their weights scaled by
g~ ?) that are not contained in the components ¢V, of the groups
M., or in a possible sibling ¢l 1 or qV, of R,. Write s as in
(23). The scaled total weight of signatures s’ > s is

e s+2)q ¢
Ws: 5 8 - s—‘,—l—i--r:(g
q Z(S-l—?-l—r)q - +(1—q)2
=0
2g(1+4)+1 2
_2q(0+9)+ ()
21—-q) (1—9q)

where the last equality follows by applying (23) and substituting
g1 for 2¥. Let W/ denote the part of W, that is contained in the
symbols ¢Vy., qUy_1, or ¢ V,” mentioned previously. Observing
the layer structures in (25)—(29), and applying (30), we obtain
W/ = ¢+ 6, where

0<j<2k1 3
k-1 _9<j<2F_3
j=2F—-2

§ = (32)

== O

The claim of the lemma for s > 2¥~1 — 2 follows by writing
w(Rs) = W, — W/, observing that w(R ;) increases monoton-
ically with 4, and bounding w(R,), as an elementary function
of ¢, in the interval 0 < ¢ < i for each of the cases in (32). No-
tice that due to the mentioned monotonicity, w(R ) is evaluated
only at the ends of the ranges of j in (32), and we substitute ¢ !
for 2% |

The following is an immediate consequence of Lemma 11.

Corollary 3: Let R/, denote the virtual symbol containing
R in each layer L, listed in (22) and (25)—(29). Then, after
scaling by ¢~ *, all the symbols to the left of R, in L are of
weight 1, all the symbols to its right are of weight 2, and we
have 1 < w(R) <2

Proof: The claims on the symbols to the left and to the right
of R/, follow from (30) and the definition of the notation M in
(24). As for R, we have w(R}) = 1 + w(R,), and the claim
of the corollary follows by applying Lemma 11. ]

Theorem 6: The prefix code C_, is optimal for TDGD(q)
withg = 27% k > 1.

Proof: We rely on the method from [2]. The reduced
sources are defined by S, = H; U F,, where H, denotes, as
earlier, the multiset of signatures strictly smaller than s, and
the multiset F is essentially identical to the layer L, defined
in (22) and (25)—~(29). The steps taking a reduced source to
one of lower order follow the layer “unfolding” steps listed
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in the description of the codes C'_j (see the discussion fol-
lowing (22) and (25)—(29), and Appendix A), in reverse order
(bottom-up). It remains to show that these steps correspond to a
valid sequence of mergers in the Huffman procedure. Consider
a layer L, and let 91, ¢9, ...,y denote its symbols, listed
from left to right, as shown in (22) and (25)—(29). It is readily
verified that N = 2¢ for a layer (22), with i as defined in Case
1, and that N is divisible by 2! in layers of types (i)—(ii),
and by 2* in layers of types (iii)~(v). By Corollary 3, the v,
are ordered by increasing weight order, and, since ¢ < 1/2,
the weight of any ¢/; is smaller than any weight in H,. Thus,
the Huffman procedure on S, starts by pairing symbols in
L;. Now, it also follows from Corollary 3 that the merger
of any two of the v; results in a combined weight that is at
least as large as any weight in the layer. Thus, merging 12; 1
with 19;, 1 < 7 < N/2, is a valid sequence of steps in the
Huffman procedure on L. Moreover, since there is at most
one symbol of weight different from 1 or 2 (after scaling),
and strictly between them, the resulting sequence of merged
weights includes weights 2, w, and 4, with 2 < w < 4, with
at most one symbol of weight w. We iterate the argument until
the signatures s — 1 get incorporated, and L;_; gets formed
(see Appendix D), reaching, thus, the reduced source S, 1.
Proceeding recursively, we reach the reduced source Sp, which
coincides with the layer L. As described in (22) for s = 0,
this layer consists of one virtual symbol formed by Ry and
the symbol 0 joined under the root of the tree C'_; (thus, the
Huffman procedure on Sy is trivial in this case). ]

B. Limit Code

The sequence of optimal codes €', stabilizes in the limit of
k — oc (¢ — 0), as stated in the following corollary.

Corollary 4: When k — o0, the sequence of optimal trees
C_}, converges to a limit tree C_ ., that can be constructed as
follows: start with (J,, for n = 2, recursively replace the left-
most leaf of the deepest level of the current tree by @, 41, and
increase n.

Proof: The corollary is proved by observing that the part of
the tree corresponding to 0 < s < 2*~1 in Theorem 6 remains
invariant for all " > k. This corresponds to the layers L, of
Case 1. ]

The limiting property of C'_ . in connection with the TDGD
is mentioned also in [11, Ch. 5]. Fig. 7 shows the first 14 levels
of C_.. Notice that the first 11 levels coincide with those of
C_3 in Fig. 6, up to reordering of nodes at each level. Explicit
encoding with C'_, can be done as follows. Given a pair (4, j),
with signature s = ¢ + j, we write s = 2t — 1 + r, with
0<r<2t—1andt > 0. We encode (z,7) with a binary
codeword zy, where z = 1 ~D{s+D)+2+1 jdentifies the path
to the root of the quasi-uniform tree that contains all the leaves
of signature s, and y = Q;42(é + 1). The resulting code length
distribution for signature s is 2f — 1 — r signatures encoded with
length (¢ — 1)(s + 2) + 2r + 2, 2r + 1 signatures encoded with
length (¢ — 1)(s 4+ 2) 4+ 2r + 3.

The following corollary shows the average code length at-
tained by C'_ . on an arbitrary TDGD.
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Fig. 7. Top of the limit tree C'_

Corollary 5: The average code length of the limit code C'_
under TDGD(q) is given by

P ILAC

f>0

L,(C_ H1—q) +2).

Proof: Fors > 0,letrandt,t> 0,0 <r <2t — 1 be
the (uniquely determined) integers such that s = 2 — 1+ 7. By
Corollary 4 and the ensuing discussion, we can write

9t+l _o
L(C o)== Z D(t, s) (33)
t>0 s=2/—
where
Dlt,s)=((t—1)(s+2)+2r +2) (s+1)+2r + 1.

Substituting r = s—2°+1 and carrying out the inner summation
in (33), we obtain

L(C-n)= (=Y ("' 7240 +

>0

@ IBW) G4

for some functions A(¢) and B(¢). It can be verified by symbolic
manipulation that

1—¢?+2
B(oy=—2>1"2
© (1—q)?
and
20— 2% + 2
Al — 1)+ B(t) = g-— 2112

(1—q)?
Substituting in (34), after rearranging terms, we obtain

+3 ¢ ‘1( (t—1)+B(t )))

t>1

o [1—q%+2q o 28 —2tg+2
oo (e )

t>1

Ly(Coc)=(1-0q) (

2 (241-q)+2).
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0.11 1
0.10
0.09
0.08
0.07 1
0.06
0.05 A
0.04 1
0.03 I
0.02 A
0.01 A
0.00 T

Best code Cy,

Best Golomb code G,

Optimal code

...........

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
(b) g

Fig. 8. Redundancy (in bits/integer symbol) for the optimal prefix code (estimated numerically), the best Golomb code, the limit code C'_ ., and the best code
C_;, or Cy, for each value of ¢ (a) 0 < ¢ < % (b) % < ¢ < 1. The limit code C_ . is plotted up to ¢ = 0.33715 .. ., where its curve intersects that of C'; (or,

equivalently, C'_,).

VI. PRACTICAL CONSIDERATIONS AND REDUNDANCY

In a practical situation, one could use the codes Cy, forg > %,
and the codes C'_, for g < % However, a lower complexity al-
ternative, which incurs a modest code length penalty (as shown
in Fig. 8), is touse C'_ . in lieu of the codes C_, up to the value
of ¢ where switching to C'; gives better average code length. The
crossover point is at ¢ &~ 0.33715.

Encoding a symbol pair (x, y) with a code C}, is of about the
same complexity as two encodings of individual symbols with
a Golomb code of order k. As described in Theorem 2, the en-
coding with C} entails unary encodings of |z/k]| and |y/k],
which would also be needed with the Golomb code. Given the
profile of the top code T}, = Ty, ., , determined in Theorem
4, encoding with T} requires comparing the index of the pair
(z mod k, y mod k) with at most two fixed thresholds, to deter-
mine the corresponding code length (which can assume up to
three consecutive integer values). The codeword is then com-
puted directly from the index. Each encoding with the Golomb
code, on the other hand, requires one comparison with a fixed
threshold to determine the code length of each () component,
or a total of two for the pair (z, y).

As in the 1-D case (see, e.g., [3] and [15]), when encoding
a sequence i, Tz, ..., %o, ..., the best code for the next pair
(221, 2;) can be determined adaptively, driven by the suf-
ficient statistic S; = £71 fo:—f z;. The crossover points for
the estimates of the code parameter k£ can be precomputed and
stored in terms of the statistic S;. The 1-D code has a slight ad-
vantage in the adaptation, in that it can adapt its statistic with
every symbol, whereas the 2-D code can only do it every two
symbols. Depending on the application, this advantage is likely
to be superseded by the redundancy advantage of the 2-D code.
Also, as in the 1-D case, there are certain complexity advan-
tages, in both encoding and adaptation when using the subset
of parameters of the form £ = 2”. In this case, an adaptation
strategy that estimates the best parameter - directly from the
statistic S¢, without the need to compare it with precomputed
crossover points, can be derived for the codes CY,, as was done
in [3] and [15] for two-sided geometric distributions. We omit
the details, since both the technique and the resulting parameter
estimation method are similar to those in the references.

Fig. 8 presents plots of redundancy for various code families
as a function of ¢, measured in bits per integer symbol relative
to the entropy of the geometric distribution (recall that the latter
is given by H(q) = }1‘(:’3 , where h(q) is the binary entropy func-
tion [2]). Plots are shown for the optimal prefix code for each
value of ¢ (estimated numerically over a dense grid of values
of ¢, and in sufficient precision to make the estimation error
smaller than the plot resolution), the best Golomb code, the best
code C'_ or C}, for each ¢, and the limit code C'_ .. Here, “the
best Golomb code” means the code (; that minimizes (over
k) the code length for the given value of ¢; similar minimiza-
tions are used for the best codes C_ and C} for each ¢. In
the figure, we can observe the advantage in redundancy for the
codes C'_g, (or C_,) and Cy. over Golomb codes, except in the
region where the best codes of both types are equivalent (i.e., the
optimality regions of C; and C5). The redundancy advantage is
near 2 : 1 (as expected) at the limit of ¢ — 0 and it peaks near
g = 0.28 (at more than 13.6 : 1). A redundancy advantage close
to 2 : 1 is observed also as ¢ — 1. The advantage of ('}, over
symbol-by-symbol Golomb codes is consistent with Corollary
1, and, in fact, the plot in Fig. 8 can be regarded as “visual ev-
idence” for the corollary. Fig. 9 plots the corresponding curves
for the relative redundancy, i.e., the redundancy normalized by
the per-symbol entropy H(g) for each plotted value of . We
observe that although the relative redundancy for all the codes
considered converges to zero, as expected, when ¢ — 1 (since
H(q) — o0), the decay is very slow for most of the interval,
and the curves fall to zero “suddenly,” with infinite slope, near
g = 1. This is due to the slow rate of growth of H(qg), which
behaves asymptotically as — log(1 — ¢) near the limit point.

It is apparent from Fig. 8 that as the redundancy of the codes
C} peaks in the transitions between one “best” value of k and
the next, the estimated redundancy of the optimal codes remains
rather flat. This poses the question, which also remains open, of
whether other sequences of codes with simple descriptions and
encoding/decoding procedures could be found that would more
closely track the redundancy curve of the optimal codes.

The asymptotic behavior of the redundancy of C} in the
regime ¢ — 1, shown in more detail in Fig. 10, is oscillatory,
as is also the case for Golomb codes [2]. The limiting behavior
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Fig. 9. Relative redundancy (redundancy normalized by the per-symbol entropy) for the codes in Fig. 8. The interval 0.5 < ¢ < 0.75 is omitted from (B), as the

best codes ', and GG, coincide over that interval.

Code Cj
Optimal code
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0.0152

0.0150
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0.0146 4--

0.0144
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q

Fig. 10. Redundancy as ¢ — 1 (k — oo). Dashed lines show the asymptotic
limits R; and R.. The inset closes up further on a narrow segment, showing
the redundancy of the codes ;. versus the asymptotic estimate (35).

of the redundancy can be characterized precisely, as we show
next.

Corollary 6: Let A\, = 2™ /k?, where M is as defined in
Theorem 4. As k — oo, the redundancy of the code Cj, at ¢ =
2-1/k ig

R(k) =

DO | =

T 2 1
(1+log \g)+24 2VA 5 (1+ Ak — =
loge 2

—log(eloge)+o(1). (35)

Remark: We have 3 £ A 2, where < denotes inequality
up to asymptotically negligible terms. For large k, as k in-
creases, Ar sweeps its range decreasing from % to %, at which
point M, increases by one, and Ay, resets to %, starting a new
cycle.

Proof of Corollary 6: We derive, from (21), an asymp-
totic expression for the code length £,(Cy). To estimate the
parameter j in (21), we need to solve the quadratic equation
A(x) = 0, with A(x) as defined in Theorem 4. Writing 2% =
Aik2, it is readily verified that the largest solution to the equa-
tion is £ = (2,/Ak _1_ 1) k + O(1)2ak + O(1). Thus,
j = ak+ O(),and ¢ = 27 + O(k1). Writing also
g=2Yk=1-1824 (k" 2), and noting that A(j) = O(k),
we obtain from (21)

L(Ch)=M+1+2""(1+(1+a)ln2) + o(1).

As for the entropy, we have

gl
H(q) = %iq —log(1—q)=log(c log ¢)+log k+o(1)

= log(eloge)+ = (M —log Ax)+o0(1).

1
2
The claimed result (35) follows by substituting the asymptotic
expressions for £,(Cy) and H(g) in the formula for the redun-
dancy per symbol, namely, R(k) = 1£,(Cy) — H(q). |

The limits of oscillation of the function R can be obtained
by numerical computation, yielding Rlé liminfy ., R(k) =
0.014159... and Re2limsup,_. R(k) = 0.014583....
These limits are shown in Fig. 10. The corresponding limits
for the redundancy of the Golomb codes are, respectively,

! =0.025101... and R} = 0.032734. .. [2].

Corollary 6 applies to the discrete sequence of redundancy
values at the points ¢ = 27/ _ It is not difficult to prove that
the same behavior, and in particular the limits 71 and Rz, apply
also to the continuous redundancy curve obtained when using
the best code C}, at each arbitrary value of ¢. This follows from
the readily verifiable fact that as ¢ varies in the interval 2~/ <
g < 27141 the maximal variation in both the code length
under C}, and the distribution entropy is bounded by O(k1).
Fig. 10 suggests that the same oscillatory behavior might apply
also to the redundancy curve of the optimal prefix code for each
value of ¢. It follows from the foregoing discussion that this
is true for the limit superior I?5. The question remains open,
however, for the limit inferior R, which is an upper bound for
the limit inferior of the optimal redundancy.

APPENDIX A
PROOFS FOR SECTION IV-B

We recall that we consider a 4-uniform probability distribu-
tionp = (p1,pa, ..., pn), where probabilities are listed in non-
increasing order, and an optimal tree 7" for p, with fr < 2. We
define »n = [log N, and we denote by 1, the number of leaves
atdepth £ in T'.

Proof of Lemma 6: Say T hast > 0 leaves at depths £ <
m — 2. Then, T has no leaves at depths £’ > m, and it can have
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a total of at most 2™ ! — 3¢ leaves altogether. But N > 2™ 1,
a contradiction. Say now that 7" has nodes at depth 72 4-2. Then,
all of its leaves must be at depths ¢/ > m, and some must be at
depths strictly greater than m. Thus, 7’, being full, must have
more than 2" > N leaves, again a contradiction. The second
claim of the lemma is a straightforward consequence of f7 < 2.
]

Proof of Lemma 7: Let Ny = (npr—1,np7, nar41) be
the compact profile of a tree 7' with IV leaves and fr < 2.
Clearly, 737 1+1 must be even, and we write n741 = 2¢ for some
nonnegative integer ¢. The components of N, must satisfy

nap—1+ nar +2c=N. (36)

By Kraft’s equality, which must hold for the full tree 7', we have
dnpg_1 + 2nap + 2¢ = 2MH!

(37

which holds also in the case ¢ = 0. From (36) and (37), we
obtain

ny-1=2M —N+e (38)
Now, from (38) and (36), we obtain
ny = 2N —2M _ 3¢, (39)

Equations (38) and (39) together with the definition of ¢ yield
the profile (8). The valid range of variation of ¢ is determined
by the nonnegativity constraints on the entries of the profile.
When M = m — 1 (¢ = 1), the lower limit¢, = N — 2" !
is determined by the nonnegativity of n; _;. Since 2 > N,
when M = m, the lower limit is the trivial ¢, = 0 in this case.
In both cases, the upper limit ¢, = [M] is determined by
the nonnegativity of n ;. [ |

Proof of Lemma 8: Fora given value of o € {0, 1}, assume
¢ and ¢’ areindices suchthate, < ¢/ < ¢ < &,,and lets, be the
segment of s corresponding to o. By (10) and the monotonicity
of the weights, we have

Do =pN_2041 +PN_2042 — Do _nyer
S PN -2¢+1 + PN -2¢42 — PoM N4 = Dcr,c~

Thus, if D, . < 0, then D, < 0, and if D, . = 0, then
D, < 0.1t follows that s, is nondecreasing. It remains to
prove that —Sg(Dl,g1+1) < sg(Dy,1). Assume that Dy 1 < 0.
Then, we have

D1, cn =pom-na+p2mn —p1 2 2pam_np —P1
>2(pNna+pN)—p1 > dpn—p1 >0

where the equality follows from (10) and the definition of ¢,
the first and third inequalities from the monotonicity of p,
the second inequality from our assumption on Dy 1, and the
last inequality from the 4-uniformity of p. Hence, we must
have D1£1+1 > 0. Similarly, if Dy; < 0, then we must
have D1 . 11 > (. Therefore, —sg (Dl,gl-ﬁ-l) < sg(Dy1), as
claimed. ]
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Proof of Theorem 3: The theorem follows directly from
Lemma 8, observing also that by the assumptions of the the-
orem, and by Lemma 7, at least one of the trees 7, .., (1,1) =
(0, ¢) < (0,¢) must be optimal for p. |

APPENDIX B
PROOFS FOR SECTION IV-C

We derive the proof of Theorem 4 through a series of lemmas.
We recall that we seek an optimal tree for the source A of (7),
with vector of (unnormalized) weights

7 2k—3 2k—-3 2k—2
, A

p:(q07qlﬂql7‘"7qj7qj7"'7q7"'/q

with ¢ = 271/%and where ¢’ is repeated j + 1 times for 0 <
j < k—1,and 2k — 1 — j times for &k < 3 < 2k — 2. For
succinctness, in this appendix, when we say “optimal” we mean
“optimal for Ak.” Notice that, in p, three consecutive weights
are never distinct; we refer to this fact as the “three consecutive
weights” property. Throughout the appendix, we assume that
k > 2, as we recall that optimal trees for & = 1,2 are fully
characterized in Remark 2 following Theorem 2.

Lemma 12: Trees Ty, . with ¢ = ¢, are not optimal. Conse-
quently, the profile (nas—1,7ar, nas41) of an optimal tree has
2y Z 3.

Proof: Recalling the profile Nz,  in (8), with ¢ = ¢, and
k> 2,wehaveny € {0,1,2}, npy—1 > 1 and npry1 > 2.
Let ¢* be the lightest weight on level M — 1. By the “three con-
secutive weights” property, the two heaviest weights on level
M + 1 are greater than or equal to g2, Recalling the expres-
sion for D, . in (10), and the interpretation that follows it, we
obtain D,z > ¢*(1 — 2¢®) > 0. Thus, by Theorem 3, 7% is
not optimal. An optimal tree 7}, . would, therefore, have ¢ < ¢,
and, thus, n; > 3. |

The following lemma gives a first, rough approximation of
the distribution of weights by levels in an optimal tree 75, .,
which will allow us to identify the appropriate range (i.e., (12)
or (13)) for the heaviest and the lightest weights on level M of
the tree.

Lemma 13: Let T . be an optimal tree, and let qj and
q**—2-1" denote, respectively, the heaviest and the lightest
weights on level M of the tree. Then, we have 57 < k — 1,

J'<k—1,andj+j <k

Proof: Consider first the case where ¢ > ¢, i.e., all the
components of the profile N7 _ are positive. The lightest
weight on level A/ — 1 of the tree immediately precedes ¢* in
p. Hence, it is of the form ¢/ —¢, with ¢ € {0, 1}. On the other
hand, reasoning similarly, the heaviest two weights on level
M +1 are of the form g2k —23'+<" and 2% —2-7'+='+=" where
¢’,e” € {0,1} and & + ¢” < 1 (due to the “three consecutive
weights” property). Since T}, . is optimal, by the definition of
D, . in (9), we must have D, . < 0. Applying (10), the given

constraints on ¢, ¢, ¢, and the fact that ¢* = %, we get

0> Do-p — _qj—e + qQk—Q—j/-I—E/ + q2k—2—jl+e/+e”

)

> _qj—l + 2q2k—1—j' — _qj—l + qk—l—j’.
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decrease increase
B — e
- - + +
. e ......... = e
cor PoM _g24c PoM k24t .. Pr2—2¢-1 Pr2—2¢ Pr2—2¢+1  DPE2—2c42 -+
j—e j 2k—2—j'—¢'  2k—2—j' 2k—2—j'+&" 2k—2—j'+&" +&'"
qJ qJ q J —€ q J q J +e q J te+e

) weights in Dy ¢,

[ J weights in Dy 41 .

Fig. I1. Weights involved in the conditions for ¢ = ¢;.: o weights in D, ., ¢ weights in D, ._1.

Thus, j + j' < k. Since both j and j' are positive when ¢ > ¢,
the claim of the lemma follows in this case.

Consider now the case where ¢ = ¢,, i.e., T, . is a quasi-
uniform tree. [f o = 0, we have ny; 11 = 0, and thus, the lightest
weight on level M is p2 = ¢?* 72, and j' = 0. For the heaviest
weight on level M, we have pym_j2,1 = ¢°. By (14), we have
2™ — k% + 1 < k(k + 1)/2. Recalling the order and structure
of p, we obtain ¢/ = pom _g211 > prkt1)2 = ¢° 1. Thus,
j £k —1.Thecase of ¢ = ¢, and o = 1 is argued similarly,
using (16) in lieu of (14), and leading to j = 0 and j*' < k& — 1.
]

It follows from Lemma 13 that in an optimal tree, the heaviest
weight on level M is covered by (12) in Lemma 9 (and, thus, so
is any weight on level M — 1), while the lightest weight on level
M is covered by (13) in that lemma (and, thus, so is any weight
on level M + 1). Consequently, an optimal tree is completely
determined by a tuple j = (4, r, 5, 7), with0 < 5, 7/ < k-1,
0 <r<j,and0 <+’ < j'. The profile of the tree is then given
by

(7 +1
mga =20 (40)
2] _|_ 1
Nar41 :J(j27) +7 (41)
nar =k? —nar_1 — narya (42)

The following lemma presents a characterization of the least
value of ¢ for which T, .. is optimal. The lemma follows imme-
diately from Theorem 3 and Lemma 10.

Lemma 14: Let ci, be the least value of ¢ such that 7, .. is
optimal. Then, either DUsEGJrl > 0 (withep =¢,), 0r Dy, <
Oand Dy ., 41 > 0 (with ¢ > ¢,).

Define the function

NN
FGor i) = 282 -2V () e - LD
(43)
acting on tuples j = (4,7, 4,") for a given value of k. Next,
we derive a set of conditions on the tuple j corresponding to the
tree 1, ., characterized in Lemma 14.
Lemma 15: Letj = (j,r,j',r") be the tuple defining the
profile of T}, ., in (40)—(42). Then
F(j,rg,r") =0 (44)
and exactly one of the following conditions holds:
i) 7,97 > 0,5+ 4 =k — 2. Eitherr =0and 0 < ¢/ < j,
orl <r < jandr € {0,1}.

i) j,7/>0,j+j =k—1,r=0and ' € {0,1}.

iii) i/ =0,7"=0,je{k—-2k—1},0<r <j.

iv) j=0,r=0,7 e{k—2k—-1},0 <+ < 4.

Conversely, if j = (j,r, j, ) satisfies (44) and one of the con-
ditions (i)—(iv), then j defines 1, ., .

Proof: The necessity of (44) follows from the definition of
F(j,r,j',r") and from (38), setting ¢ = 1nas41, substituting
the expressions from (40) and (41) for nas—1 and ;41 , respec-
tively, and rearranging terms. In fact, (44) must hold for any op-
timal tree, not just for ¢ = ¢;. Conditions (i)—(iv) will follow
from an exhaustive case study of configurations that yield the
inequalities on the quantities D, . that characterize the point
¢ = ¢, as stated in Lemma 14.

Consider, first, the case where ¢, > ¢, . Then, for ¢ = ¢,
by Lemma 14, we have D, . < 0 and D, .1 > 0. Writing
down the expressions for D, . and D, .11 explicitly according
to (10), we observe that six weights are involved, as illustrated
in Fig. 11. In order to switch from a negative D, . to a non-
negative D, .., we must have a decrease from pou _j2 .
to pom 21041, OF an increase from pg2 2,41 + Pr2_2042 tO
Pi2 —92¢—1 + Pr2 —2e, or both. By the definitions of 7 and 5/, we
have posr_ g2 = 7, and pyz_g, = ¢%* 277" Taking into
account that consecutive weights can vary at most by a factor
of ¢, we can write for the other weights involved

Pov e =g (45)
P2 -_20c-1 = q2k—2—j/—5’ (46)
D2 —peqr = q2R2TIEE e
Pr2—2c42 = q2k:—2_j/+£,/+5,,, (48)

where ¢,¢’,e”, ¢ € {0,1}, and, due to the “three consecutive
weights” property, we must have ¢’ +¢” < 1 ande” +&" < 1.
Table V summarizes the patterns of values of & = (e, e,e”, e’”")
that satisfy these constraints and also produce the combination
of weight increases or decreases necessary to satisfy the condi-
tions for ¢ = ¢. On the right column of the table, we list the
conditions imposed on j by the constraints of each case. To il-
lustrate the proof approach, we derive these conditions, in the
following, for the representative case € = (1,0, 0, 1). The other
cases follow using similar arguments, which are also similar to
those used in the proof of Lemma 13 (here, more parameters are
assumed known, which allows us to obtain tighter bounds).

Assumee = (1,0,0, 1). Then, writing the conditions on Dy
and D, .41 at ¢ = ¢ explicitly, substituting for the weights
using the known values in &, and recalling that ¢* = 1, we
obtain

0> Dy =pro—geq1 + Pr?—2e492 — P2M _p2qe
2k—2—74" 2k—1—4"
=y J + q J

> 2¢q

j—1
—q
2k—1—j' -1 _  k—1—4 j—1
- q =q - q
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TABLE V
POSSIBLE CASES FOR £ = (s,",c", &'"") FROM (45)—(48), AND THE
CONDITIONS IMPOSED ON (f, r, j', 1) AT ¢ = ¢,

(e,el€e"") | Conditions on (j,7,5,7")

(1,0,0,0) jti=k-2r=02<r<j-1
(1,0,0,1) jtie{k—2k—-1},r=0,7"=1
(1,0,1,0) j+ie{k—2k—1},r=0,7"=0
(0,0,0,1) jt+i=k-21<r<jr=1
(0,0,1,0) j+i=k-21<r<j =0
(1,1,0,0) j+i=k—-2,r=0,7" =7

(1,1,0,1) j+ie{k—1Lk-2}r=0r"=35=1
(0,1,0,0) case cannot occur at ¢ = cg

(0,1,0,1) j+i=k-21<r<jr=45=1

and

0< Doct1 =Prz—20-1 + Prz—2c — D2v k2 4ol
W25 | 2W—2—j _ j
=q T +q g

_ 2{]21«7273" = qkfzfj’ — 4.

It follows that k — 2 < j 4 3/ < k — 1, as claimed in the second
row of Table V. The conditions on 7 and ' follow from Lemma
9, observing that r resets to zero at points where j increases,
and similarly with »’ relative to j'. In this case, pon 2. is
the last weight of the form qj —1 and, thus, we have nj;_1 =
2M k2 4 ¢ = j(j+1)/2 and r = 0; scanning p from right to
left, pg2 _o.40 is the last weight of the form qzk"’l’j/ , and, thus,
wehavenpry1 =2c=5'(j'+1)/2+ 1, and v = 1.

It is readily verified that all the cases on the right column
of Table V satisfy either Condition (i) or Condition (ii) of the
lemma.

Consider now the case where ¢, = ¢,. In this case, the tree
is quasi-uniform. When o, = 0, since na;11 = 0, we have
j' = 1" = 0. The condition j < k — 1 was established in
Lemma 13, while the condition j > k& — 2 follows directly from
D,,’QGH = Ds1 > 0. Thus, Condition (iii) of the lemma is
satisfied in this case. Similarly, when ¢, = ¢, and o, = 1, we
have j = r =0, j* < k — 1 was established in Lemma 13, and
J' 2 k—2 follows from D, . > 0. Thus, Condition (iv) of the
lemma is satisfied in this case.

To prove the sufficiency of the conditions of the lemma, we
first claim that, with j satisfying the conditions, the profile N =
(nar—1,nar, nar+1) defined in (40)—(42) defines a valid tree.
Clearly, na;—1 and npr41 are nonnegative. To verify that n s is
also nonnegative, we write
G+, 76+

2 , 2
T,
LU+ 32+ 1)

where the inequality follows from the fact that (¢ + b + 1)? >
a(a + 1) + b(b + 1) for a,b > 0, and from the inequalities
r < jand v < j'. With j + j° < k — 1, it follows that
nar-1+narg1 < k— 14+ k?/2 < k2. Hence, nay, as defined
in (42), is positive. On the other hand, (44), together with the
fact that the components of N add up to k2, is equivalent to the
Kraft equality for N. Therefore, N defines a valid tree 7, .. It
is readily verified that if either Condition (i) or (ii) is satisfied,
then the parameters (o, ¢} of T, . satisfy ¢ > ¢, Dy . < 0, and

/
Ny -1+ Np41 = +r+r

+ji+7
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Dy 11 < 0. Thus, by Lemma 8, we have ¢ = ¢;. Similarly,
if either Condition (iii) or (iv) is satisfied, we have ¢ = ¢_,
D, +1 2 0,and, again, ¢ = ci. |
The following lemma explores some properties of the func-
tion A(x) defined in (17).
Lemma 16:
i) Forany z, we have A(x + 1) = A(x) + = + k.
il) We have A(—1) < 0and A(k) > 0. Thus, ¢, the largest
real root of A, satisfies —1 < x¢ < k.
iii) The values A(k — 1) and A(k — 2) are even integers.
Proof:
i) The claim is readily verified by direct application of (17).
ii) Setting # = —1 in (17), and recalling that Q = k* —
[k(k —1)/4] and M = [log ], we obtain

A(-1) = 2(;;2 _ % _ 2M)

1
=2(Q -2" + il(k mod 4)€{2,3})
= L(kmod 1yefz,3} + 2(Q — 2M),

where 1p» = 1 if the predicate P is true, or 1p = 0
otherwise. It follows that A(—1) can be positive only if
(kmod 4) € {2,3} and Q = 2. Writing Q = Q(k),
and computing explicitly Q(44 + 2) = (44 4 3)(3/ + 1)
and Q(4¢ + 3) = (£ 4+ 1)(12£ 4+ 7), we conclude that
() has at least one odd divisor when (k mod 4) € {2,3}.
Therefore, we must have A(—1) < 0.

Furthermore, since Q < 2™ < 2Q) — 1, we have

A(k) =28 =2 4 p(k+1) -1
> 2k* —4Q + k(k+1)+1

:—2k2+4[w-‘ +h(E+1)+1
> 28>+ k(k—1)+k(k+1)+1=1

Thus, A(k) > 0, and, since the coefficient of 22 in A(x)
is %, 2y must be in the claimed range.

iii) By direct computation, we have A(k — 1) = 2k% —
M+ 4 (b — Dk and A(k —2) = 2k% — 2M+1 4 (k —
2)(k—1).Since k > 2 and M > 0, both values are even.

|

To complete the proof of Theorem 4, we will construct a tuple

j= (4, r, j',r") that satisfies the conditions of Lemma 15, and,
thus, defines the sought parameter pair (o, ).

Proof of Theorem 4. Tt follows immediately from the def-
inition of A(z) in (17) and of F(j,r,j',7’) in (43) that for
j,r, 4", we have

FGr.gr) . »
_ A(j)+(k—3—2)(k—1—1)_1 ('+1)

2 2

+2r—7'.

When 7' = k — 7 — 2, this reduces to

F(j,r .y =AG)+2r — ¢ (49)
while with 7/ = k — 1 — 7, we get
F(// ,’,7]-/77/) = A(/) + 2r — l", - (k - / - 1) (50)
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We will use these relations to verify that the solutions con-
structed in the following satisfy (44). Let 2y be the largest real
root of A(x), and let & = [x¢]. By Lemma 16(ii), we have
—1 <& <k, A() <0,and A(£ + 1) > 0. We consider three
main cases for A(£), and for each case (and possible subcases),
we define a tuple j = (7,7, 7', 7’) and verify that it satisfies the
conditions of Lemma 15. A
D0 < —A(€) < 26 Letj = & r = |[=20FL) and
r’ = —A(j) mod 2. By the assumptions of the case on
A(€), we have j > 0. As for j/, we have the subcases in
the following. At the end of each subcase, we note which
of Conditions (i)—(iv) of Lemma 15 is satisfied.

a) j = 0: We must have A(0) = 0,sowe getr = r/ =
0, and we set 7 = k£ — 2 (Condition (iv)).

b) j € {k—2,k— 1}: By Lemma 16(iii), A(j) is even,
and ' = 0. We getr = —# and 0 < r < 7 by the
assumptions on A(&), and we set j/ = 0 (Condition
(iii)).

¢) 0<j<k—2:Setj =k —2— j.From the choices

forrandr’,weget0 <r <jand0 <+ <1<y
(Condition (i)).
To verify that (44) is satisfied, we apply (49) for sub-
cases a) and ¢), and for subcase b) with j = k£ — 2.
We apply (50) for subcase b) with j = k& — 1. For ex-
ample, for subcase c), by (49) and the definitions of r
and ', we have

FGir o) =AG) +2r =1
= A(j) +2 {71 - A(])J —

~
|
>
)
R
~—

Verification of F' = 0 for the other subcases follows
along similar lines.

2) —A(&) € {26+ 1,264+ 2}: Letj = £+ 1. By Lemma
16(ii), we have 0 < j < k. We claim that ;7 < £ — 1.
Assume, contrary to the claim, that j = k. Then, —A(k —
1) = —A(§) = 2k — e withe € {0,1}, and, by Lemma
16(i), wehave A(E+1) = A(k) = A(k—1)+2k—-1=
¢ — 1 < 0, contradicting Lemma 16(ii), which establishes
A(§+ 1) > 0. Thus, we have 0 < j < k — 1, and,
defining 7' =k — 1 — j, wealsohave 0 < §' < k— 1. By
Lemma 16(i), we have A(j) = A(§+1) = A(§) +E+ &,
and, by the conditions of the case on A(¢), we get A(j) €
{k—j,k—j—1}.Definer = 0,and v’ = A(j)—(k—7—1),
which implies #* € {0,1}. Thus, whenever 0 < j <
k—1,j=(4,r 4, r") satisfies Condition (ii) of Lemma 15.
When j = 0, j satisfies Condition (iv), and when j = k—1,
it satisfies Condition (iii) as long as 7/ = (. We claim that
when 7’ = 1, we musthave j < k—1. Otherwise, if ' = 1
and j = k— 1, then, by the definition of ', we have A(k —
1) =A(j) ="+ (k—j—1) =1, contradicting Lemma
16(iii). Thus, j satisfies one of the conditions (ii)—(iv) of
Lemma 15. By (50) and the definitions of 7 and 7/, j also
satisfies (44).

2393

3) —A(§) > 2£ + 3: Let j = £ + 1. By Lemma 16(ii), we
have 0 < 5 < k. We claim that j < &k — 2. Assume,
contrary to the claim, that j = k£ — 1. Then, £ = k — 2,
and, by the assumptions of the case, we have —A(k—2) >
2(k —2)+ 3 = 2k — 1. Applying Lemma 16(i), we get
A+ D) =Ak-1)=Ak-2)+(k—-2)+k =
A(k —2) 4+ 2k — 2 < —1, contradicting Lemma 16(ii),
since we must have A(£+1) > 0. Similarly, if j = k, then
—A(k—=1) > 2k+1and A(k) = A(k—1)+2k—1 < -2,
again contradicting Lemma 16(ii). Thus, we have 0 < 3 <
k—2, and we can define 7' = k—2— j, which also satisfies
0 < j/ < k—2.By Lemma 16(i), and the conditions of the
caseon A(&),wehave A(j) = A(f+1) = A(§)+E+k <
k—¢—3=k—2—j=4.Definer =0,and 7’ = A(j),
satisfying 0 < ' < j'. Thus, j = (4,r,7',+') satisfies
Condition (i) of Lemma 15. By (49) and the definitions of
r and 7/, j also satisfies (44).

Cases 1-3 above cover all possible values of A(¢), and in
all cases, we have exhibited an explicit tuple j = (4,7, 4", 7)
satisfying the conditions of Lemma 15, and, therefore, defining
the optimal tree T, ., . It can readily be verified that the def-
initions of j and r in (18) summarize the corresponding def-
initions in the cases of the proof, with the top branch of (18)
corresponding to Case 1, and the bottom branch to Cases 2 and
3. Furthermore, the definition of ¢ in (19) reflects the param-
eter c = npy_1 — 2™ + k2 in the profile (40)—(42) defined by j
for ¢ = ¢,. |

Proof of Corollary 1: By the structure of C}, in Theorem 2,
it suffices to prove that () - Q0. is not optimal for the finite source
Ai.Leth = [logk] anda = 2" —k, with0 < a < 2" ~!. From
the profile of (), given in Section II-B, one derives the profile
of Jx - i, obtaining

No. ¢, = (ngh_g, Nop_1, ngh) = (0,2, 2a(k—a), (k—a)Q) .

Since Q. - @y has fringe thickness fr < 2, it has a representa-
tion 75, ., , for some parameters o, ¢, as defined in Lemma
7, with N = k2. The case ¢ = 0 (i.e., & = 2") is readily
discarded as suboptimal for £ > 2, as it corresponds to a uni-
form tree with 22" leaves, which cannot be optimal for Ak since
Pr2 + prz_q < py for that source. Also, we can assume that g,
is such that Lemma 10 is satisfied, and that no, _o and nyy, are
such that they can be written, respectively, as nas—1 and nas11
in (40)—(41), with j and j' satisfying Lemma 13. Otherwise,
Ts,, ¢, is not optimal, and the corollary is proved. By Lemma 9,
wecanwritea? < $(j+1)(j+2) < $(j+2)%, 0rj > V2a-2.
Similarly, we have (k — a)? < 3(5' + 1)(j’ +2) < 3(;/ +2)2,
orj' > \/2(k—a) —2. Adding up, we obtain j+ 5/ > /2 k —4,
and, hence, for k£ > 10, 7 + j° > k, contradicting Lemma 13.
For the remaining cases, if & € {7, 9}, one verifies that o, vio-
lates Lemma 10, and for & € {3, 5,6}, one can easily verify, by
direct inspection, that T, ., is suboptimal for ,Zlk. |

APPENDIX C
PROOFS FOR SECTION IV-D

Proof of Corollary 2: By Theorem 2, the code length for
(a,b) under Cy is |Tx(amodk,bmodk)| + 2 + |%] + [2].
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Writing a = mk +iand b = nk + j with0 < 4,5 < £k,
m,n > 0, the average code length under Cy, is

Eq(Ok)
=(1=¢%) > > ¢TTIR(T(L ) +mtn+2)

0<i,j<k m,n>0

2 (1-¢q)? L it
= + T, ) ¢
L—gt (- qk)20§i§k—1
2 —
pE— +Ly(Tk) (51)

where the second equality follows from elementary series
computations, and the third identifies the (normalized) average
code length of the code 7} defined in Theorem 4. Denote by
Wir—1, Wiy, and Wy, the total normalized weight of sym-
bols in Ay assigned length M —1, M, and M 4+ 1, respectively,
by T}%. Then, the average code length of T}, is given by

Lo(Ty=M-DWya+MWy+(M+1)Warp
=M+ Wyg1 — Wy, (52)
From the profile (8), with N = k? and ¢ = ¢, as defined in (19),

recalling (12), letting v = (1 — q)%/(1 — ¢*)?, and carrying out
the computations, we obtain

FU+1)/2+4r i—1 )
Wy_1=7 Z P = WZ(/@ + )¢ +yrg
i=1 =0

=g 1+ (1 -q)j—(1—¢g)°r)

B (1-q") '
Similarly, from the proof of Theorem 4, setting ' = k — j — 2
and ' = 2r + A(j), we obtain

3G /24

>

=0

Wi =~ D2

§-1
_ 72(£+1)q2k—2—[+’}/’r, qzk—2—j’
=0

¢F gt ((k*jfl)(lfq)qfﬁ(l*q}g(27‘*A(J'))>
(1-¢%)" '

The result (20) now follows by substituting the aforementioned
expressions for Wps_1 and Wjys4q in (52), substituting for
Zq(Tk) in (51), and using appropriate algebraic simplifica-
tions. The result (21), in turn, follows by applying the relation
" =1/2. ]

APPENDIX D
LAYER TRANSITIONS IN THE CODES C_,

In each layer transition described in the following, we assume
that we start from a layer L, of type (x), and show how it un-
folds into a layer L1 of type (y), the transition being denoted
(x) — (v). We denote by d, the depth of the shallowest node
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in L.

(i) — (i): The tree ¢°*1V; in each of the ¢ groups M in L,
unfolds, by the definition of V;, (see also Fig. 4), into a tree
¢**t2V, and 2% — 1 leaves of weight ¢*T!, which provides a
group M for L.,;. Hence, there are £ groups M in L.,
which include (2% — 1) signatures s + 1. This propagation of
groups M will occur in the same way in all the other transitions
below; its discussion will be omitted for those cases. There re-
main s + 2 — (2% — 1)/ = 2*71 + 1 + j signatures s + 1, with
0 < j < 2F1 _ 4 (recall that layers of type (i) exist only if
k > 2). A quasi-uniform tree with 2~ + 2 + 4 leaves is built,
rooted at R,. This tree has 2~ — (j 4+ 1) — 1 leaves at depth
k — 1, which are labeled s + 1, and 2(j + 1) + 2 leaves at depth
k, of which 2(j +1) + 1 are assigned label s + 1, and one serves
as the root of R, 1, consistent with a structure of type (i) for
s + 1 (and, correspondingly, 7 + 1).

(i) — (ii): We have j = 28~ — 3. We let R be the root of a
balanced tree of height k. Of its 2* leaves, 2% — 2 are assigned
the remaining 2% — 2 signatures s + 1, one leaf serves as the root
for U1, and the remaining leaf as the root for R, ;.

(ii) — (iii) (k > 2): The tree qUy,_1 in L, contributes 2¢~*
leaves of signature s+1 to L 1, in addition to those contributed
by the groups M. There remain 2% ~! —1 signatures s+ 1, which
are assigned to leaves of a balanced tree 24, rooted at R ;. The
remaining leaf splits into two nodes, one is the root of a tree
qUj_1, and the other anchors R4 .

(i) — (iv) (k = 2): The tree qU; in L contributes 2" leaves
of signature s + 1 to L 11, in addition to those contributed by
the groups M. The remaining signature s + 1 is assigned to one
leaf of a tree U/, rooted at R,. The second leaf splits into two
nodes, one is the root of a tree gV, , and the other anchors R, 1.

(iii) — (iii): The construction from the previous transition is
kept, except that one of the leaves of the tree i{;,_; rooted at
‘R, is split, making room for the additional signature s + 1 re-
sulting from the increase in s. Hence, there is a decrease by one
in the number of leaves at depth d,, and an increase by two in the
number of leaves at depth d, + 1. This process continues until
j=2F_—4,

(iii) — (iv): This transition is identical to the previous one,
except that instead of a tree glf;_1, a tree g/, is attached as
sibling to R4

(iv) — (v): The tree ¢V, from the previous transition pro-
vides the 28=1 — 1 leaves of signature s + 1, plus a tree ¢V.
What started as a balanced tree of depth & — 1 in the transition
(ii) — (iii) has evolved into a balanced tree of depth k, with all
leaves assigned signatures s + 1, except for one, which serves
as the root of Rs11.

(v) — (i) (k > 2): The tree ¢V} added in the previous tran-
sition generates a new group M, consistent with the increment



BASSINO et al.: OPTIMAL PREFIX CODES FOR PAIRS OF GEOMETRICALLY DISTRIBUTED RANDOM VARIABLES

in £. All signatures s + 1 now originate from the groups M, or
from R, which brings the construction back to a layer of type
(i), completing the cycle.

(v) — (ii) (k = 2): When k& = 2, the transition occurs to a
layer of type (ii), as described previously for the initial transi-
tion from Case 1 to Case 2.
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